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DNN for acoustic modelling
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Sequential Data

@ Modelling sequential data
with time dependences

oot (O (O O between feature vectors
@ Can model fixed context
recurrent with a feed-forward

hidden network with previous time
input vectors added to the

input O O network input (in signal
x1 x2 x3 processing this is called FIR

t — finite impulse response)

@ Model sequential inputs
using recurrent connections
to learn a time-dependent
state (in signal processing
this is called IR — infinite
impulse response)
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Don't use an input context win-
dow — context is learned by the
recurrent hidden (state) units



Recurrent networks

Can think of recurrent networks in terms of the dynamics of the
recurrent hidden state

@ Settle to a fixed point — stable representation for a sequence
(e.g. machine translation)

@ Regular oscillation (“limit cycle”) — learn some kind of
repetition

e Chaotic dynamics (non-repetitive) — theoretically interesting
(“computation at the edge of chaos”)

Useful behaviours of recurrent networks:

@ Recurrent state as memory — remember things for
(potentially) an infinite time

@ Recurrent state as information compression — compress a
sequence into a state representation
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Simplest recurrent network
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Recurrent network unfolded in time
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@ An RNN for a sequence of T inputs can be viewed as a deep
T-layer network with shared weights
@ We can train an RNN by doing backprop through this
unfolded network, making sure we share the weights
o Weight sharing
o if two weights are constrained to be equal (w; = w,) then they
will stay equal if the weight changes are equal
(OE/Owr = OE [Ows)
o achieve this by updating with (0E /0wy + OE /Ows) (cf Conv
Nets)
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Back-propagation through time (BPTT)

o We can train a network by unfolding and back-propagating
through time, summing the derivatives for each weight as we
go through the sequence

@ More efficiently, run as a recurrent network

e cache the unit outputs at each timestep

e cache the output errors at each timestep

e then backprop from the final timestep to zero, computing the
derivatives at each step

e compute the weight updates by summing the derivatives across
time

@ Expensive — backprop for a 1,000 item sequence equivalent to
a 1,000-layer feed-forward network

@ Truncated BPTT — backprop through just a few time steps
(e.g. 20)
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Vanishing and exploding gradients

@ BPTT involves taking the product of many gradients (as in a
very deep network) — this can lead to vanishing (component
gradients less than 1) or exploding (greater than 1) gradients

@ This can prevent effective training
@ Modified optimisation algorithms
o RMSProp (normalise the gradient for each weight by average
of it magnitude, learning rate for each weight)
o Hessian-free — an approximation to second-order approaches
which use curvature information
@ Modified hidden unit transfer functions
o Long short term memory (LSTM)
o Linear self-recurrence for each hidden unit (long-term memory)
o Gates - dynamic weights which are a function of the inputs

o RelUs
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Recurrent networks in speech recognition

@ 1990s — Hybrid RNN/HMM speech recognition (Robinson et
al)

@ 2009 onwards — RNN language models (Mikolov — new state
of the art; next week’s lecture)

@ 2013 onwards — RNN/LSTM models at state of the art for
acoustic modelling (Graves, Sak et al)

@ 2015 onwards — RNN sequence modelling also replaces the
HMM — “HMM-free” ASR (next week also)
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Recurrent networks in speech recognition

e 1990s — Hybrid RNN/HMM speech recognition
(Robinson et al)

@ 2009 onwards — RNN language models (Mikolov — new state
of the art; next week’s lecture)

e 2013 onwards — RNN/LSTM models at state of the art
for acoustic modelling (Graves, Sak et al)

@ 2015 onwards — RNN sequence modelling also replaces the
HMM — “HMM-free” ASR (next week also)
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Speech recognition with recurrent networks (1990s)
< Phoneme Probabilities

! Recurrent
Neural
Network
t
Speech
Acoustics

Robinson et al (1996)

ASR Lecture 13 10



1990s RNN

Features

o MEL+: Filter-bank outputs + voicing parameters (23
features/frame)

o PLP cepstral coefficients (13 features)

o Coefficients normalized to zero mean and unit variance

256 hidden (state) units

79 context-independent phone classes (outputs)
Output training target delayed by 5 frames

Use RNN scaled likelihoods in hybrid RNN/HMM
About 100k trainable parameters

Trained using stochastic BPTT (using method similar to
Rprop/RMSprop) on WSJO (3M training examples)

In 1994 training took five days on a specially designed parallel
computer (the RAP)
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Combined RNN system

Speech waveform Preprocessor Recurrent net Markov mode
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Individual systems: WER of 14-15% on WSJ “spoke 6 data”

Interpolated in log domain: WER=11%
(Best context dependent GMM/HMM system in 1995: WER=8%)
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LSTM vl
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LSTM vl
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S Hochreiter and J Schmidhuber (1997). “Long Short-Term
Memory", Neural Computation, 9:1735-1780.
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LSTM v2
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FA Gers et al (2000). “Learning to Forget: Continual Prediction
with LSTM", Neural Computation, 12:2451-2471.
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LSTM v3
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LSTM equations
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Google LSTM experiments (2014—date)

@ Google voice search data — 1900h training set
@ Input features: 40-d log mel filterbank energies.

@ No input context, single frame 40-d frame presented each
timestep

@ LSTM networks

e 400-6,000 LSTM cells per layer
o 1-7 layers

e 13M-37M trainable parameters

e 14,727 context-dependent states

@ Delay output targets by 5 frames
@ Use RNN to estimated scaled likelihoods
@ Train using BPTT
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LSTM acoustic modelling architectures
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Figure 2: LSTM RNN architectures.
(Sak, 2014)
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LSTM with projection layer (LSTMP)
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Figure 1: LSTMP RNN architecture. A single memory block is
shown for clarity.

(Sak, 2014)
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LSTM ASR Results (Google Voice Search task)

Table 1: Experiments with LSTM and LSTMP RNN architec-
tures showing test set WERs and frame accuracies on devel-
opment and training sets. L indicates the number of layers,
for shallow (1L) and deep (2,4,5,7L) networks. C' indicates the
number of memory cells, P the number of recurrent projection
units, and N the total number of parameters.

C P | Depth N Dev | Train | WER
(%) | (%) | (%)

840 - SL 37M | 67.7 | 70.7 10.9
440 - SL 13M | 67.6 | 70.1 10.8
600 - 2L 13M | 66.4 | 68.5 11.3
385 - 7L 13M | 66.2 | 68.5 11.2
750 - 1L 13M | 633 | 65.5 12.4

6000 | 800 IL 36M | 673 | 749 11.8
2048 | 512 2L 22M | 68.8 | 72.0 10.8
1024 | 512 3L 20M | 693 | 725 10.7
1024 | 512 2L I5SM | 69.0 | 74.0 10.7
800 | 512 2L 13M | 69.0 | 72.7 10.7
2048 | 512 IL 13M | 67.3 | 71.8 11.3

(Sak, 2014)
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