
Recurrent Network Acoustic Models

Steve Renals

Automatic Speech Recognition – ASR Lecture 13
29 February 2016

ASR Lecture 13 Recurrent Network Acoustic Models 1



Sequential Data

t-2

x1 x2 x3 x1 x2 x3

t-1

x1 x2 x3

t

output

hidden

input

2 frames of context

DNN for acoustic modelling

MFCC Inputs

CD
Phone Outputs

Hidden units

(39*9=351)

2000

3–8 hidden layers

12000

Modelling sequential data
with time dependences
between feature vectors

Can model fixed context
with a feed-forward
network with previous time
input vectors added to the
network input (in signal
processing this is called FIR
– finite input response)

ASR Lecture 13 Recurrent Network Acoustic Models 2



Sequential Data

x1 x2 x3

t

output

recurrent
hidden

input

Don’t use an input context win-
dow – context is learned by the
recurrent hidden (state) units

Modelling sequential data
with time dependences
between feature vectors

Can model fixed context
with a feed-forward
network with previous time
input vectors added to the
network input (in signal
processing this is called FIR
– finite impulse response)

Model sequential inputs
using recurrent connections
to learn a time-dependent
state (in signal processing
this is called IIR – infinite
impulse response)

ASR Lecture 13 Recurrent Network Acoustic Models 3



Recurrent networks

Can think of recurrent networks in terms of the dynamics of the
recurrent hidden state

Settle to a fixed point – stable representation for a sequence
(e.g. machine translation)

Regular oscillation (“limit cycle”) – learn some kind of
repetition

Chaotic dynamics (non-repetitive) – theoretically interesting
(“computation at the edge of chaos”)

Useful behaviours of recurrent networks:

Recurrent state as memory – remember things for
(potentially) an infinite time

Recurrent state as information compression – compress a
sequence into a state representation

ASR Lecture 13 Recurrent Network Acoustic Models 4



Simplest recurrent network

yk(t) = softmax

(
H∑
r=0

w
(2)
kr hr (t)

)

hj(t) = sigmoid


d∑

s=0

w
(1)
js xs(t) +

H∑
r=0

w
(R)
jr hr (t − 1)︸ ︷︷ ︸

Recurrent part



Hidden (t)

Output (t)

Input (t) Hidden (t-1)

w(1)

w(2)

w(R)

ASR Lecture 13 Recurrent Network Acoustic Models 5



Recurrent network unfolded in time

Hidden (t)

Output (t)

Input (t)

Hidden (t-1)

w(1)

w(2)

w(R)

Hidden (t+1)

Input (t-1)

Output (t-1)

Input (t+1)

Output (t+1)

w(2)w(2)

w(1)w(1)

w(R)
w(R) w(R)

An RNN for a sequence of T inputs can be viewed as a deep
T -layer network with shared weights

We can train an RNN by doing backprop through this
unfolded network, making sure we share the weights
Weight sharing

if two weights are constrained to be equal (w1 = w2) then they
will stay equal if the weight changes are equal
(∂E/∂w1 = ∂E/∂w2)
achieve this by updating with (∂E/∂w1 + ∂E/∂w2) (cf Conv
Nets)

ASR Lecture 13 Recurrent Network Acoustic Models 6



Back-propagation through time (BPTT)

We can train a network by unfolding and back-propagating
through time, summing the derivatives for each weight as we
go through the sequence

More efficiently, run as a recurrent network

cache the unit outputs at each timestep
cache the output errors at each timestep
then backprop from the final timestep to zero, computing the
derivatives at each step
compute the weight updates by summing the derivatives across
time

Expensive – backprop for a 1,000 item sequence equivalent to
a 1,000-layer feed-forward network

Truncated BPTT – backprop through just a few time steps
(e.g. 20)

ASR Lecture 13 Recurrent Network Acoustic Models 7



Vanishing and exploding gradients

BPTT involves taking the product of many gradients (as in a
very deep network) – this can lead to vanishing (component
gradients less than 1) or exploding (greater than 1) gradients

This can prevent effective training

Modified optimisation algorithms

RMSProp (normalise the gradient for each weight by average
of it magnitude, learning rate for each weight)
Hessian-free – an approximation to second-order approaches
which use curvature information

Modified hidden unit transfer functions
Long short term memory (LSTM)

Linear self-recurrence for each hidden unit (long-term memory)
Gates - dynamic weights which are a function of the inputs

ReLUs

ASR Lecture 13 Recurrent Network Acoustic Models 8



Recurrent networks in speech recognition

1990s – Hybrid RNN/HMM speech recognition (Robinson et
al)

2009 onwards – RNN language models (Mikolov – new state
of the art; next week’s lecture)

2013 onwards – RNN/LSTM models at state of the art for
acoustic modelling (Graves, Sak et al)

2015 onwards – RNN sequence modelling also replaces the
HMM – “HMM-free” ASR (next week also)

ASR Lecture 13 Recurrent Network Acoustic Models 9



Recurrent networks in speech recognition

1990s – Hybrid RNN/HMM speech recognition
(Robinson et al)

2009 onwards – RNN language models (Mikolov – new state
of the art; next week’s lecture)

2013 onwards – RNN/LSTM models at state of the art
for acoustic modelling (Graves, Sak et al)

2015 onwards – RNN sequence modelling also replaces the
HMM – “HMM-free” ASR (next week also)

ASR Lecture 13 Recurrent Network Acoustic Models 9



Speech recognition with recurrent networks (1990s)

time (ms)

fre
q (

Hz
)

0 200 400 600 800 1000 1200 1400
0

2000

4000

6000

8000

Recurrent
Neural
Network

Speech
Acoustics

Phoneme Probabilities

Robinson et al (1996)

ASR Lecture 13 Recurrent Network Acoustic Models 10



1990s RNN

Features

MEL+: Filter-bank outputs + voicing parameters (23
features/frame)
PLP cepstral coefficients (13 features)
Coefficients normalized to zero mean and unit variance

256 hidden (state) units

79 context-independent phone classes (outputs)

Output training target delayed by 5 frames

Use RNN scaled likelihoods in hybrid RNN/HMM

About 100k trainable parameters

Trained using stochastic BPTT (using method similar to
Rprop/RMSprop) on WSJ0 (3M training examples)

In 1994 training took five days on a specially designed parallel
computer (the RAP)

ASR Lecture 13 Recurrent Network Acoustic Models 11



Combined RNN system

u(t)

x(t+1)x(t)

Time
delay

y(t-4)

u(t)

x(t+1)x(t)

Time
delay

y(t-4)

u(t)

x(t+1)x(t)

Time
delay

y(t-4)

u(t)

x(t+1)x(t)

Time
delay

y(t-4)

Mel +

PLP

Mel +

PLP

sh ow

iym

Speech waveform Preprocessor Recurrent net Markov mode

Individual systems: WER of 14–15% on WSJ “spoke 6 data”
Interpolated in log domain: WER=11%
(Best context dependent GMM/HMM system in 1995: WER=8%)

ASR Lecture 13 Recurrent Network Acoustic Models 12



LSTM v1

I(t) H(t-1)

H(t)

Basic
Sigmoid

Unit

ASR Lecture 13 Recurrent Network Acoustic Models 13



LSTM v1

I(t) H(t-1)

H(t)

1

Linear
Recurrence

ASR Lecture 13 Recurrent Network Acoustic Models 13



LSTM v1

I(t) H(t-1)

H(t)

1

Output
Gate

Input
Gate

S Hochreiter and J Schmidhuber (1997). “Long Short-Term
Memory”, Neural Computation, 9:1735–1780.

ASR Lecture 13 Recurrent Network Acoustic Models 13



LSTM v2

I(t) H(t-1)

H(t)

Forget
Gate

FA Gers et al (2000). “Learning to Forget: Continual Prediction
with LSTM”, Neural Computation, 12:2451–2471.

ASR Lecture 13 Recurrent Network Acoustic Models 14



LSTM v3

I(t) H(t-1)

H(t)

C(t)

C(t-1)

Peephole
Connections

ASR Lecture 13 Recurrent Network Acoustic Models 15



LSTM equations

2. LSTM ARCHITECTURES

In the standard architecture of LSTM networks, there are an input
layer, a recurrent LSTM layer and an output layer. The input layer
is connected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell input
units, input gates, output gates and forget gates. The cell output units
are connected to the output layer of the network. The total number
of parameters W in a standard LSTM network with one cell in each
memory block, ignoring the biases, can be calculated as follows:

W = nc ⇥ nc ⇥ 4 + ni ⇥ nc ⇥ 4 + nc ⇥ no + nc ⇥ 3

where nc is the number of memory cells (and number of memory
blocks in this case), ni is the number of input units, and no is the
number of output units. The computational complexity of learning
LSTM models per weight and time step with the stochastic gradient
descent (SGD) optimization technique is O(1). Therefore, the learn-
ing computational complexity per time step is O(W ). The learn-
ing time for a network with a relatively small number of inputs is
dominated by the nc ⇥ (nc + no) factor. For the tasks requiring a
large number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models be-
come computationally expensive.

As an alternative to the standard architecture, we propose two
novel architectures to address the computational complexity of
learning LSTM models. The two architectures are shown in the
same Figure 1. In one of them, we connect the cell output units to
a recurrent projection layer which connects to the cell input units
and gates for recurrency in addition to network output units for the
prediction of the outputs. Hence, the number of parameters in this
model is nc ⇥nr ⇥ 4+ni ⇥nc ⇥ 4+nr ⇥no +nc ⇥nr +nc ⇥ 3,
where nr is the number of units in the recurrent projection layer. In
the other one, in addition to the recurrent projection layer, we add
another non-recurrent projection layer which is directly connected to
the output layer. This model has nc ⇥nr ⇥4+ni ⇥nc ⇥4+(nr +
np) ⇥ no + nc ⇥ (nr + np) + nc ⇥ 3 parameters, where np is the
number of units in the non-recurrent projection layer and it allows
us to increase the number of units in the projection layers without
increasing the number of parameters in the recurrent connections
(nc ⇥ nr ⇥ 4). Note that having two projection layers with regard
to output units is effectively equivalent to having a single projection
layer with nr + np units.

An LSTM network computes a mapping from an input sequence
x = (x1, ..., xT ) to an output sequence y = (y1, ..., yT ) by cal-
culating the network unit activations using the following equations
iteratively from t = 1 to T :

it = �(Wixxt + Wimmt�1 + Wicct�1 + bi) (1)
ft = �(Wfxxt + Wmfmt�1 + Wcfct�1 + bf ) (2)

ct = ft � ct�1 + it � g(Wcxxt + Wcmmt�1 + bc) (3)
ot = �(Woxxt + Wommt�1 + Wocct + bo) (4)

mt = ot � h(ct) (5)
yt = Wymmt + by (6)

where the W terms denote weight matrices (e.g. Wix is the matrix
of weights from the input gate to the input), the b terms denote bias
vectors (bi is the input gate bias vector), � is the logistic sigmoid
function, and i, f , o and c are respectively the input gate, forget gate,
output gate and cell activation vectors, all of which are the same size
as the cell output activation vector m, � is the element-wise product

in
pu

t

g ⇥ ct�1 h

⇥

⇥

it

ft

ct

ot re
cu

rr
en

t
pr

oj
ec

tio
n

ou
tp

ut

xt

mt

pt

rt

rt�1

yt

memory blocks

Fig. 1. LSTM based RNN architectures with a recurrent projection
layer and an optional non-recurrent projection layer. A single mem-
ory block is shown for clarity.

of the vectors and g and h are the cell input and cell output activation
functions, generally tanh.

With the proposed LSTM architecture with both recurrent and
non-recurrent projection layer, the equations are as follows:

it = �(Wixxt + Wirrt�1 + Wicct�1 + bi) (7)
ft = �(Wfxxt + Wrfrt�1 + Wcfct�1 + bf ) (8)

ct = ft � ct�1 + it � g(Wcxxt + Wcrrt�1 + bc) (9)
ot = �(Woxxt + Worrt�1 + Wocct + bo) (10)

mt = ot � h(ct) (11)
rt = Wrmmt (12)
pt = Wpmmt (13)

yt = Wyrrt + Wyppt + by (14)
(15)

where the r and p denote the recurrent and optional non-recurrent
unit activations.

2.1. Implementation

We choose to implement the proposed LSTM architectures on multi-
core CPU on a single machine rather than on GPU. The decision
was based on CPU’s relatively simpler implementation complexity
and ease of debugging. CPU implementation also allows easier dis-
tributed implementation on a large cluster of machines if the learn-
ing time of large networks becomes a major bottleneck on a single
machine [14]. For matrix operations, we use the Eigen matrix li-
brary [15]. This templated C++ library provides efficient implemen-
tations for matrix operations on CPU using vectorized instructions
(SIMD – single instruction multiple data). We implemented acti-
vation functions and gradient calculations on matrices using SIMD
instructions to benefit from parallelization.

We use the asynchronous stochastic gradient descent (ASGD)
optimization technique. The update of the parameters with the gra-
dients is done asynchronously from multiple threads on a multi-core
machine. Each thread operates on a batch of sequences in parallel
for computational efficiency – for instance, we can do matrix-matrix
multiplications rather than vector-matrix multiplications – and for
more stochasticity since model parameters can be updated from mul-
tiple input sequence at the same time. In addition to batching of se-
quences in a single thread, training with multiple threads effectively

ASR Lecture 13 Recurrent Network Acoustic Models 16



Google LSTM experiments (2014–date)

Google voice search data – 1900h training set

Input features: 40-d log mel filterbank energies.

No input context, single frame 40-d frame presented each
timestep

LSTM networks

400–6,000 LSTM cells per layer
1–7 layers
13M–37M trainable parameters
14,727 context-dependent states

Delay output targets by 5 frames

Use RNN to estimated scaled likelihoods

Train using BPTT

ASR Lecture 13 Recurrent Network Acoustic Models 17



LSTM acoustic modelling architectures

in
pu

t

g cell h

it

ft

ct

ot

re
cu

rr
en

t

ou
tp

ut

xt

mt

rt

rt�1

yt

LSTM memory blocks

Figure 1: LSTMP RNN architecture. A single memory block is
shown for clarity.

memory cell. The output gate controls the output flow of cell
activations into the rest of the network. Later, the forget gate
was added to the memory block [18]. This addressed a weak-
ness of LSTM models preventing them from processing contin-
uous input streams that are not segmented into subsequences.
The forget gate scales the internal state of the cell before adding
it as input to the cell through the self-recurrent connection of
the cell, therefore adaptively forgetting or resetting the cell’s
memory. In addition, the modern LSTM architecture contains
peephole connections from its internal cells to the gates in the
same cell to learn precise timing of the outputs [19].

An LSTM network computes a mapping from an input
sequence x = (x1, ..., xT ) to an output sequence y =
(y1, ..., yT ) by calculating the network unit activations using
the following equations iteratively from t = 1 to T :

it = �(Wixxt + Wimmt�1 + Wicct�1 + bi) (1)
ft = �(Wfxxt + Wfmmt�1 + Wfcct�1 + bf ) (2)

ct = ft � ct�1 + it � g(Wcxxt + Wcmmt�1 + bc) (3)
ot = �(Woxxt + Wommt�1 + Wocct + bo) (4)

mt = ot � h(ct) (5)
yt = �(Wymmt + by) (6)

where the W terms denote weight matrices (e.g. Wix is the ma-
trix of weights from the input gate to the input), Wic, Wfc, Woc

are diagonal weight matrices for peephole connections, the b
terms denote bias vectors (bi is the input gate bias vector), � is
the logistic sigmoid function, and i, f , o and c are respectively
the input gate, forget gate, output gate and cell activation vec-
tors, all of which are the same size as the cell output activation
vector m, � is the element-wise product of the vectors, g and h
are the cell input and cell output activation functions, generally
and in this paper tanh, and � is the network output activation
function, softmax in this paper.

2.2. Deep LSTM

As with DNNs with deeper architectures, deep LSTM RNNs
have been successfully used for speech recognition [11, 17, 2].
Deep LSTM RNNs are built by stacking multiple LSTM lay-
ers. Note that LSTM RNNs are already deep architectures in
the sense that they can be considered as a feed-forward neu-
ral network unrolled in time where each layer shares the same
model parameters. One can see that the inputs to the model
go through multiple non-linear layers as in DNNs, however the
features from a given time instant are only processed by a sin-
gle nonlinear layer before contributing the output for that time

input

LSTM

output

(a) LSTM

input

LSTM

LSTM

output

(b) DLSTM

input

LSTM

recurrent

output

(c) LSTMP

input

LSTM

recurrent

LSTM

recurrent

output

(d) DLSTMP

Figure 2: LSTM RNN architectures.

instant. Therefore, the depth in deep LSTM RNNs has an ad-
ditional meaning. The input to the network at a given time step
goes through multiple LSTM layers in addition to propagation
through time and LSTM layers. It has been argued that deep
layers in RNNs allow the network to learn at different time
scales over the input [20]. Deep LSTM RNNs offer another
benefit over standard LSTM RNNs: They can make better use
of parameters by distributing them over the space through mul-
tiple layers. For instance, rather than increasing the memory
size of a standard model by a factor of 2, one can have 4 lay-
ers with approximately the same number of parameters. This
results in inputs going through more non-linear operations per
time step.

2.3. LSTMP - LSTM with Recurrent Projection Layer

The standard LSTM RNN architecture has an input layer, a re-
current LSTM layer and an output layer. The input layer is con-
nected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell
input units, input gates, output gates and forget gates. The cell
output units are also connected to the output layer of the net-
work. The total number of parameters N in a standard LSTM
network with one cell in each memory block, ignoring the bi-
ases, can be calculated as N = nc ⇥ nc ⇥ 4 + ni ⇥ nc ⇥ 4 +
nc ⇥ no + nc ⇥ 3, where nc is the number of memory cells
(and number of memory blocks in this case), ni is the number
of input units, and no is the number of output units. The com-
putational complexity of learning LSTM models per weight and
time step with the stochastic gradient descent (SGD) optimiza-
tion technique is O(1). Therefore, the learning computational
complexity per time step is O(N). The learning time for a net-
work with a moderate number of inputs is dominated by the
nc ⇥ (4 ⇥ nc + no) factor. For the tasks requiring a large
number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models
become computationally expensive.

As an alternative to the standard architecture, we proposed
the Long Short-Term Memory Projected (LSTMP) architec-
ture to address the computational complexity of learning LSTM
models [3]. This architecture, shown in Figure 1 has a separate
linear projection layer after the LSTM layer. The recurrent con-
nections now connect from this recurrent projection layer to the
input of the LSTM layer. The network output units are con-
nected to this recurrent layer. The number of parameters in this
model is nc⇥nr⇥4+ni⇥nc⇥4+nr⇥no+nc⇥nr +nc⇥3,

(Sak, 2014)

ASR Lecture 13 Recurrent Network Acoustic Models 18



LSTM with projection layer (LSTMP)

in
pu

t

g cell h

it

ft

ct

ot

re
cu

rr
en

t

ou
tp

ut

xt

mt

rt

rt�1

yt

LSTM memory blocks

Figure 1: LSTMP RNN architecture. A single memory block is
shown for clarity.

memory cell. The output gate controls the output flow of cell
activations into the rest of the network. Later, the forget gate
was added to the memory block [18]. This addressed a weak-
ness of LSTM models preventing them from processing contin-
uous input streams that are not segmented into subsequences.
The forget gate scales the internal state of the cell before adding
it as input to the cell through the self-recurrent connection of
the cell, therefore adaptively forgetting or resetting the cell’s
memory. In addition, the modern LSTM architecture contains
peephole connections from its internal cells to the gates in the
same cell to learn precise timing of the outputs [19].

An LSTM network computes a mapping from an input
sequence x = (x1, ..., xT ) to an output sequence y =
(y1, ..., yT ) by calculating the network unit activations using
the following equations iteratively from t = 1 to T :

it = �(Wixxt + Wimmt�1 + Wicct�1 + bi) (1)
ft = �(Wfxxt + Wfmmt�1 + Wfcct�1 + bf ) (2)

ct = ft � ct�1 + it � g(Wcxxt + Wcmmt�1 + bc) (3)
ot = �(Woxxt + Wommt�1 + Wocct + bo) (4)

mt = ot � h(ct) (5)
yt = �(Wymmt + by) (6)

where the W terms denote weight matrices (e.g. Wix is the ma-
trix of weights from the input gate to the input), Wic, Wfc, Woc

are diagonal weight matrices for peephole connections, the b
terms denote bias vectors (bi is the input gate bias vector), � is
the logistic sigmoid function, and i, f , o and c are respectively
the input gate, forget gate, output gate and cell activation vec-
tors, all of which are the same size as the cell output activation
vector m, � is the element-wise product of the vectors, g and h
are the cell input and cell output activation functions, generally
and in this paper tanh, and � is the network output activation
function, softmax in this paper.

2.2. Deep LSTM

As with DNNs with deeper architectures, deep LSTM RNNs
have been successfully used for speech recognition [11, 17, 2].
Deep LSTM RNNs are built by stacking multiple LSTM lay-
ers. Note that LSTM RNNs are already deep architectures in
the sense that they can be considered as a feed-forward neu-
ral network unrolled in time where each layer shares the same
model parameters. One can see that the inputs to the model
go through multiple non-linear layers as in DNNs, however the
features from a given time instant are only processed by a sin-
gle nonlinear layer before contributing the output for that time

input

LSTM

output

(a) LSTM

input

LSTM

LSTM

output

(b) DLSTM

input

LSTM

recurrent

output

(c) LSTMP

input

LSTM

recurrent

LSTM

recurrent

output

(d) DLSTMP

Figure 2: LSTM RNN architectures.

instant. Therefore, the depth in deep LSTM RNNs has an ad-
ditional meaning. The input to the network at a given time step
goes through multiple LSTM layers in addition to propagation
through time and LSTM layers. It has been argued that deep
layers in RNNs allow the network to learn at different time
scales over the input [20]. Deep LSTM RNNs offer another
benefit over standard LSTM RNNs: They can make better use
of parameters by distributing them over the space through mul-
tiple layers. For instance, rather than increasing the memory
size of a standard model by a factor of 2, one can have 4 lay-
ers with approximately the same number of parameters. This
results in inputs going through more non-linear operations per
time step.

2.3. LSTMP - LSTM with Recurrent Projection Layer

The standard LSTM RNN architecture has an input layer, a re-
current LSTM layer and an output layer. The input layer is con-
nected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell
input units, input gates, output gates and forget gates. The cell
output units are also connected to the output layer of the net-
work. The total number of parameters N in a standard LSTM
network with one cell in each memory block, ignoring the bi-
ases, can be calculated as N = nc ⇥ nc ⇥ 4 + ni ⇥ nc ⇥ 4 +
nc ⇥ no + nc ⇥ 3, where nc is the number of memory cells
(and number of memory blocks in this case), ni is the number
of input units, and no is the number of output units. The com-
putational complexity of learning LSTM models per weight and
time step with the stochastic gradient descent (SGD) optimiza-
tion technique is O(1). Therefore, the learning computational
complexity per time step is O(N). The learning time for a net-
work with a moderate number of inputs is dominated by the
nc ⇥ (4 ⇥ nc + no) factor. For the tasks requiring a large
number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models
become computationally expensive.

As an alternative to the standard architecture, we proposed
the Long Short-Term Memory Projected (LSTMP) architec-
ture to address the computational complexity of learning LSTM
models [3]. This architecture, shown in Figure 1 has a separate
linear projection layer after the LSTM layer. The recurrent con-
nections now connect from this recurrent projection layer to the
input of the LSTM layer. The network output units are con-
nected to this recurrent layer. The number of parameters in this
model is nc⇥nr⇥4+ni⇥nc⇥4+nr⇥no+nc⇥nr +nc⇥3,

(Sak, 2014)

ASR Lecture 13 Recurrent Network Acoustic Models 19



LSTM ASR Results (Google Voice Search task)

Table 1: Experiments with LSTM and LSTMP RNN architec-
tures showing test set WERs and frame accuracies on devel-
opment and training sets. L indicates the number of layers,
for shallow (1L) and deep (2,4,5,7L) networks. C indicates the
number of memory cells, P the number of recurrent projection
units, and N the total number of parameters.

C P Depth N Dev Train WER
(%) (%) (%)

840 - 5L 37M 67.7 70.7 10.9
440 - 5L 13M 67.6 70.1 10.8
600 - 2L 13M 66.4 68.5 11.3
385 - 7L 13M 66.2 68.5 11.2
750 - 1L 13M 63.3 65.5 12.4

6000 800 1L 36M 67.3 74.9 11.8
2048 512 2L 22M 68.8 72.0 10.8
1024 512 3L 20M 69.3 72.5 10.7
1024 512 2L 15M 69.0 74.0 10.7
800 512 2L 13M 69.0 72.7 10.7

2048 512 1L 13M 67.3 71.8 11.3

where nr is the number of units in the recurrent projection layer.
In this case, the model size and the learning computational com-
plexity are dominated by the nr ⇥ (4⇥nc +no) factor. Hence,
this allows us to reduce the number of parameters by the ratio
nr
nc

. By setting nr < nc we can increase the model memory
(nc) and still be able to control the number of parameters in the
recurrent connections and output layer.

With the proposed LSTMP architecture, the equations for
the activations of network units change slightly, the mt�1 acti-
vation vector is replaced with rt�1 and the following is added:

rt = Wrmmt (7)
yt = �(Wyrrt + by) (8)

where the r denote the recurrent unit activations.

2.4. Deep LSTMP

Similar to deep LSTM, we propose deep LSTMP where multi-
ple LSTM layers each with a separate recurrent projection layer
are stacked. LSTMP allows the memory of the model to be in-
creased independently from the output layer and recurrent con-
nections. However, we noticed that increasing the memory size
makes the model more prone to overfitting by memorizing the
input sequence data. We know that DNNs generalize better to
unseen examples with increasing depth. The depth makes the
models harder to overfit to the training data since the inputs
to the network need to go through many non-linear functions.
With this motivation, we have experimented with deep LSTMP
architectures, where the aim is increasing the memory size and
generalization power of the model.

3. Distributed Training: Scaling up to
Large Models with Parallelization

We chose to implement the LSTM RNN architectures on multi-
core CPU rather than on GPU. The decision was based on
CPU’s relatively simpler implementation complexity, ease of
debugging and the ability to use clusters made from commod-
ity hardware. For matrix operations, we used the Eigen matrix
library [21]. This templated C++ library provides efficient im-
plementations for matrix operations on CPU using vectorized

instructions. We implemented activation functions and gradi-
ent calculations on matrices using SIMD instructions to benefit
from parallelization.

We use the truncated backpropagation through time (BPTT)
learning algorithm [22] to compute parameter gradients on short
subsequences of the training utterances. Activations are for-
ward propagated for a fixed step time Tbptt (e.g. 20). Cross
entropy gradients are computed for this subsequence and back-
propagated to its start. For computational efficiency each thread
operates on subsequences of four utterances at a time, so matrix
multiplies can operate in parallel on four frames at a time. We
use asynchronous stochastic gradient descent (ASGD) [23] to
optimize the network parameters, updating the parameters asyn-
chronously from multiple threads on a multi-core machine. This
effectively increases the batch size and reduces the correlation
of the frames in a given batch. After a thread has updated the
parameters, it continues with the next subsequence in each utter-
ance, preserving the LSTM state, or starts new utterances with
reset state when one finishes. Note that the last subsequence
of each utterance can be shorter than Tbptt but is padded to the
full length, though no gradient is generated for these padding
frames.

This highly parallel single machine ASGD framework de-
scribed in [3] proved slow for training models of the scale we
have used for large scale ASR with DNNs (many millions of
parameters). To scale further, we replicate the single-machine
workers on many (e.g. 500) separate machines, each with three,
synchronized, computation threads. Each worker communi-
cates with a shared, distributed parameter server [23] which
stores the LSTM parameters. When a worker has computed the
parameter gradient on a minibatch (of 3⇥4⇥Tbptt frames), the
gradient vector is partitioned and sent to the parameter server
shards which each add the gradients to their parameters and re-
spond with the new parameters. The parameter server shards
aggregate parameter updates completely asynchronously. For
instance, gradient updates from workers may arrive in different
orders at different shards of the parameter server. Despite the
asynchrony, we observe stable convergence, though the learn-
ing rate must be reduced, as would be expected because of the
increase in the effective batch size from the greater parallelism.

4. Experiments
We evaluate and compare the performance of LSTM RNN ar-
chitectures on a large vocabulary speech recognition task – the
Google Voice Search task. We use a hybrid approach [24]
for acoustic modeling with LSTM RNNs, wherein the neural
networks estimate hidden Markov model (HMM) state posteri-
ors. We scale the state posteriors by the state priors estimated
as the relative state frequency from the training data to obtain
the acoustic frame likelihoods. We deweight the silence state
counts by a factor of 2.7 when estimating the state frequencies.

4.1. Systems & Evaluation

All the networks are trained on a 3 million utterance (about
1900 hours) dataset consisting of anonymized and hand-
transcribed utterances. The dataset is represented with 25ms
frames of 40-dimensional log-filterbank energy features com-
puted every 10ms. The utterances are aligned with a 85 million
parameter DNN with 14247 CD states. The weights in all the
networks are initialized to the range (-0.02, 0.02) with a uni-
form distribution. We try to set the learning rate specific to a
network architecture and its configuration to the largest value

(Sak, 2014)
ASR Lecture 13 Recurrent Network Acoustic Models 20



Reading

S Hochreiter and J Schmidhuber (1997). “Long Short-Term
Memory”, Neural Computation, 9:1735–1780.
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.

1735#.VtN93Mehb5k

FA Gers et al (2000). “Learning to Forget: Continual Prediction
with LSTM”, Neural Computation, 12:2451–2471.
http://www.mitpressjournals.org/doi/abs/10.1162/

089976600300015015#.VtN9ncehb5k

T Robinson et al (1996). “The use of recurrent networks in
continuous speech recognition”, in Automatic Speech and Speaker
Recognition Advanced Topics, Lee et al (eds), Kluwer, 233–258.
http:

//www.cstr.ed.ac.uk/downloads/publications/1996/rnn4csr96.pdf

H Sak et al (2014), “LSTM recurrent neural network architectures
for large scale acoustic modeling”, Interspeech-2014.
http://research.google.com/pubs/archive/43905.pdf

ASR Lecture 13 Recurrent Network Acoustic Models 21

http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735##.VtN93Mehb5k
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735##.VtN93Mehb5k
http://www.mitpressjournals.org/doi/abs/10.1162/089976600300015015##.VtN9ncehb5k
http://www.mitpressjournals.org/doi/abs/10.1162/089976600300015015##.VtN9ncehb5k
http://www.cstr.ed.ac.uk/downloads/publications/1996/rnn4csr96.pdf
http://www.cstr.ed.ac.uk/downloads/publications/1996/rnn4csr96.pdf
http://research.google.com/pubs/archive/43905.pdf

