#### Recurrent Network Acoustic Models

Steve Renals

#### Automatic Speech Recognition – ASR Lecture 13 29 February 2016

< 3 > <

臣

# Sequential Data



2 frames of context



DNN for acoustic modelling

- Modelling sequential data with time dependences between feature vectors
- Can model fixed context with a feed-forward network with previous time input vectors added to the network input (in signal processing this is called FIR – finite input response)

# Sequential Data



Don't use an input context window – context is learned by the recurrent hidden (state) units

- Modelling sequential data with time dependences between feature vectors
- Can model fixed context with a feed-forward network with previous time input vectors added to the network input (in signal processing this is called FIR – finite impulse response)
- Model sequential inputs using recurrent connections to learn a time-dependent state (in signal processing this is called IIR – infinite impulse response)

Can think of recurrent networks in terms of the dynamics of the recurrent hidden state

- Settle to a fixed point stable representation for a sequence (e.g. machine translation)
- Regular oscillation ("limit cycle") learn some kind of repetition
- Chaotic dynamics (non-repetitive) theoretically interesting ("computation at the edge of chaos")

Useful behaviours of recurrent networks:

- Recurrent state as memory remember things for (potentially) an infinite time
- Recurrent state as information compression compress a sequence into a state representation

・ 回 と ・ ヨ と ・ ヨ と

#### Simplest recurrent network



#### Recurrent network unfolded in time



- An RNN for a sequence of *T* inputs can be viewed as a deep *T*-layer network with shared weights
- We can train an RNN by doing backprop through this unfolded network, making sure we share the weights
- Weight sharing
  - if two weights are constrained to be equal  $(w_1 = w_2)$  then they will stay equal if the weight changes are equal  $(\partial E/\partial w_1 = \partial E/\partial w_2)$
  - achieve this by updating with  $(\partial E/\partial w_1 + \partial E/\partial w_2)$  (cf Conv Nets)

# Back-propagation through time (BPTT)

- We can train a network by unfolding and *back-propagating through time*, summing the derivatives for each weight as we go through the sequence
- More efficiently, run as a recurrent network
  - cache the unit outputs at each timestep
  - cache the output errors at each timestep
  - then backprop from the final timestep to zero, computing the derivatives at each step
  - compute the weight updates by summing the derivatives across time
- Expensive backprop for a 1,000 item sequence equivalent to a 1,000-layer feed-forward network
- Truncated BPTT backprop through just a few time steps (e.g. 20)

・日・ ・ヨ・ ・ヨ・

# Vanishing and exploding gradients

- BPTT involves taking the product of many gradients (as in a very deep network) this can lead to vanishing (component gradients less than 1) or exploding (greater than 1) gradients
- This can prevent effective training
- Modified optimisation algorithms
  - RMSProp (normalise the gradient for each weight by average of it magnitude, learning rate for each weight)
  - Hessian-free an approximation to second-order approaches which use curvature information
- Modified hidden unit transfer functions
  - Long short term memory (LSTM)
    - Linear self-recurrence for each hidden unit (long-term memory)
    - Gates dynamic weights which are a function of the inputs
  - ReLUs

- 4 回 2 - 4 回 2 - 4 回 2 - 4

#### Recurrent networks in speech recognition

- 1990s Hybrid RNN/HMM speech recognition (Robinson et al)
- 2009 onwards RNN language models (Mikolov new state of the art; next week's lecture)
- 2013 onwards RNN/LSTM models at state of the art for acoustic modelling (Graves, Sak et al)
- 2015 onwards RNN sequence modelling also replaces the HMM "HMM-free" ASR (next week also)

#### Recurrent networks in speech recognition

- 1990s Hybrid RNN/HMM speech recognition (Robinson et al)
- 2009 onwards RNN language models (Mikolov new state of the art; next week's lecture)
- 2013 onwards RNN/LSTM models at state of the art for acoustic modelling (Graves, Sak et al)
- 2015 onwards RNN sequence modelling also replaces the HMM "HMM-free" ASR (next week also)

高 と く き と く き と

# Speech recognition with recurrent networks (1990s)



Robinson et al (1996)

< 17 × 4

< 3 > <

æ

## 1990s RNN

- Features
  - MEL+: Filter-bank outputs + voicing parameters (23 features/frame)
  - PLP cepstral coefficients (13 features)
  - Coefficients normalized to zero mean and unit variance
- 256 hidden (state) units
- 79 context-independent phone classes (outputs)
- Output training target delayed by 5 frames
- Use RNN scaled likelihoods in hybrid RNN/HMM
- About 100k trainable parameters
- Trained using stochastic BPTT (using method similar to Rprop/RMSprop) on WSJ0 (3M training examples)
- In 1994 training took five days on a specially designed parallel computer (the RAP)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

# Combined RNN system



Individual systems: WER of 14–15% on WSJ "spoke 6 data" Interpolated in log domain: WER=11% (Best context dependent GMM/HMM system in 1995: WER=8%)



æ





S Hochreiter and J Schmidhuber (1997). "Long Short-Term Memory", *Neural Computation*, 9:1735–1780.

문 🛌 문



FA Gers et al (2000). "Learning to Forget: Continual Prediction with LSTM", *Neural Computation*, 12:2451–2471.



#### LSTM equations

$$i_t = \sigma(W_{ix}x_t + W_{im}m_{t-1} + W_{ic}c_{t-1} + b_i)$$
(1)

$$f_t = \sigma (W_{fx} x_t + W_{mf} m_{t-1} + W_{cf} c_{t-1} + b_f)$$
(2)

$$c_t = f_t \odot c_{t-1} + i_t \odot g(W_{cx}x_t + W_{cm}m_{t-1} + b_c)$$
(3)

$$o_t = \sigma(W_{ox}x_t + W_{om}m_{t-1} + W_{oc}c_t + b_o)$$
(4)

$$m_t = o_t \odot h(c_t) \tag{5}$$

||◆聞 |> || ● |> || ● || ●

$$y_t = W_{ym}m_t + b_y \tag{6}$$

æ

# Google LSTM experiments (2014-date)

- Google voice search data 1900h training set
- Input features: 40-d log mel filterbank energies.
- No input context, single frame 40-d frame presented each timestep
- LSTM networks
  - 400-6,000 LSTM cells per layer
  - 1–7 layers
  - 13M-37M trainable parameters
  - 14,727 context-dependent states
- Delay output targets by 5 frames
- Use RNN to estimated scaled likelihoods
- Train using BPTT

#### LSTM acoustic modelling architectures



Figure 2: LSTM RNN architectures.

(Sak, 2014)

・ロト ・回ト ・ヨト ・ヨト

æ

# LSTM with projection layer (LSTMP)



Figure 1: LSTMP RNN architecture. A single memory block is shown for clarity.

・ロト ・回ト ・ヨト

#### LSTM ASR Results (Google Voice Search task)

Table 1: Experiments with LSTM and LSTMP RNN architectures showing test set WERs and frame accuracies on development and training sets. L indicates the number of layers, for shallow (1L) and deep (2,4,5,7L) networks. C indicates the number of memory cells, P the number of recurrent projection units, and N the total number of parameters.

| C    | P   | Depth | N   | Dev  | Train | WER  |
|------|-----|-------|-----|------|-------|------|
|      |     |       |     | (%)  | (%)   | (%)  |
| 840  | -   | 5L    | 37M | 67.7 | 70.7  | 10.9 |
| 440  | -   | 5L    | 13M | 67.6 | 70.1  | 10.8 |
| 600  | -   | 2L    | 13M | 66.4 | 68.5  | 11.3 |
| 385  | -   | 7L    | 13M | 66.2 | 68.5  | 11.2 |
| 750  | -   | 1L    | 13M | 63.3 | 65.5  | 12.4 |
| 6000 | 800 | 1L    | 36M | 67.3 | 74.9  | 11.8 |
| 2048 | 512 | 2L    | 22M | 68.8 | 72.0  | 10.8 |
| 1024 | 512 | 3L    | 20M | 69.3 | 72.5  | 10.7 |
| 1024 | 512 | 2L    | 15M | 69.0 | 74.0  | 10.7 |
| 800  | 512 | 2L    | 13M | 69.0 | 72.7  | 10.7 |
| 2048 | 512 | 1L    | 13M | 67.3 | 71.8  | 11.3 |

(Sak, 2014)

# Reading

S Hochreiter and J Schmidhuber (1997). "Long Short-Term Memory", *Neural Computation*, 9:1735–1780.

http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8. 1735#.VtN93Mehb5k

FA Gers et al (2000). "Learning to Forget: Continual Prediction with LSTM", *Neural Computation*, 12:2451–2471.

http://www.mitpressjournals.org/doi/abs/10.1162/

089976600300015015#.VtN9ncehb5k

T Robinson et al (1996). "The use of recurrent networks in continuous speech recognition", in *Automatic Speech and Speaker Recognition Advanced Topics*, Lee et al (eds), Kluwer, 233–258. http:

//www.cstr.ed.ac.uk/downloads/publications/1996/rnn4csr96.pdf H Sak et al (2014), "LSTM recurrent neural network architectures for large scale acoustic modeling", Interspeech-2014.

http://research.google.com/pubs/archive/43905.pdf