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HMM /NN vs HMM/GMM

@ Advantages of NN:
o Can easily model correlated features
o Correlated feature vector components (eg spectral features)
@ Input context — multiple frames of data at input
e More flexible than GMMs — not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
o NNs can model multiple events in the input simultaneously —
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
o NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)
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HMM /NN vs HMM/GMM

@ Advantages of NN:
o Can easily model correlated features
o Correlated feature vector components (eg spectral features)
@ Input context — multiple frames of data at input
e More flexible than GMMs — not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
o NNs can model multiple events in the input simultaneously —
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
o NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)
@ Disadvantages of NN:
e Until ~ 2012:
o Context-independent (monophone) models, weak speaker
adaptation algorithms
@ NN systems less complex than GMMs (fewer parameters):
RNN — < 100k parameters, MLP — ~ 1M parameters
e Computationally expensive - more difficult to parallelise
training than GMM systems
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Deep neural networks (DNNs) — Hybrid system
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DNNs — what's new?

@ Training multi-hidden layers directly with gradient descent is
difficult — sensitive to initialisation, gradients can be very
small after propagating back through several layers.
Unsupervised pretraining

e Train a stacked restricted Boltzmann machine generative
model (unsupervised), then finetune with backprop
o Contrastive divergence training

Layer-by-layer training

e Successively train deeper networks, each time replacing output
layer with hidden layer and new output layer

@ Many hidden layers
e GPUs provide the computational power

e Wide output layer (context dependent phone classes)
e GPUs provide the computational power

(Hinton et al 2012)
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Unsupervised pretraining
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Example: hybrid HMM/DNN phone recognition (TIMIT)

@ Train a 'baseline’ three state monophone HMM/GMM system
(61 phones, 3 state HMMs) and Viterbi align to provide DNN
training targets (time state alignment)

@ The HMM/DNN system uses the same set of states as the
HMM/GMM system — DNN has 183 (61*3) outputs

@ Hidden layers — many experiments, exact sizes not highly
critical

e 3-8 hidden layers
e 1024-3072 units per hidden layer

@ Multiple hidden layers always work better than one hidden
layer
@ Pretraining always results in lower error rates

@ Best systems have lower phone error rate than best
HMM/GMM systems (using state-of-the-art techniques such
as discriminative training, speaker adaptive training)
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Acoustic features for NN acoustic models

e GMMs: filter bank features (spectral domain) not used as they
are strongly correlated with each other — would either require
o full covariance matrix Gaussians
e many diagonal covariance Gaussians
@ DNNs do not require the components of the feature vector to
be uncorrelated
o Can directly use multiple frames of input context (this has
been done in NN/HMM systems since 1990!)

e Can potentially use feature vectors with correlated components
(e.g. filter banks)

@ Experiments indicate that filter bank features result in greater
accuracy than MFCCs
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TIMIT phone error rates: effect of depth and feature type
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ASR Lecture 12



Visualising neural networks

@ How to visualise NN layers? “t-SNE” (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

@ t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces — the optimisation is over the positions of
points in the 2-d space
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SNE visualisation
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(Mohamed et al (2012))
Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
MFCCs are more scattered than FBANK
FBANK has more local structure than MFCCs
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First hidden layer: t-SNE visualisation

(Mohamed et al (2012))
Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)

Hidden layer vectors start to align more between speakers for
FBANK
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Eighth hidden layer: t-SNE visualisation
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(Mohamed et al (2012))
Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
In the final hidden layer, the hidden layer outputs for the same
phone are well-aligned across speakers for both MFCC and FBANK
— but stronger for FBANK
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Visualising neural networks

@ How to visualise NN layers? “t-SNE" (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

@ t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces — the optimisation is over the positions of
points in the 2-d space

Are the differences due to FBANK being higher dimension
(41 x 3 =123) than MFCC (13 x 3 = 39)?
e NO!
@ Using higher dimension MFCCs, or just adding noise to
MFCCs results in higher error rate
@ Why? — In FBANK the useful information is distributed over

all the features; in MFCC it is concentrated in-the first few.
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Example: hybrid HMM /DNN large vocabulary

conversational speech recognition (Switchboard)

@ Recognition of American English conversational telephone
speech (Switchboard)
@ Baseline context-dependent HMM/GMM system

o 9,304 tied states

o Discriminatively trained (BMMI — similar to MPE)
o 39-dimension PLP (+ derivatives) features

e Trained on 309 hours of speech

e Hybrid HMM/DNN system

o Context-dependent — 9304 output units obtained from Viterbi
alignment of HMM/GMM system
e 7 hidden layers, 2048 units per layer

@ DNN-based system results in significant word error rate
reduction compared with GMM-based system

@ Pretraining not necessary on larger tasks (empirical result)
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DNN vs GMM on large vocabulary tasks (Experiments

from 2012)

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF GMM-HMM GMM-HMM
TASK TRAINING DATA DNN-HMM WITH SAME DATA WITH MORE DATA
SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)
SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1(2,000 H)
ENGLISH BROADCAST NEWS 50 17.5 18.8
BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2
GOOGLE VOICE INPUT 5,870 12.3 16.0 (>> 5,870 H)
YOUTUBE 1,400 47.6 523

(Hinton et al (2012))
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Neural Network Features
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Tandem features (posteriorgrams)

@ Use NN probability estimates as an additional input feature
stream in an HMM/GMM system —- ( Tandem features (i.e.
NN + acoustics), posteriorgrams)

@ Advantages of tandem features

o can be estimated using a large amount of temporal context (eg
up to 25 frames)

e encode phone discrimination information

e only weakly correlated with PLP or MFCC features

@ Tandem features: reduce dimensionality of NN outputs using
PCA, then concatenate with acoustic features (e.g. MFCCs)

e PCA also decorrelates feature vector components — important
for GMM-based systems
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Tandem features
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Bottleneck features
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@ Use a "bottleneck” hidden layer to provide features for a
HMM/GMM system

@ Decorrelate the hidden layer using PCA (or similar)
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Experimental comparison of tandem and bottleneck

features
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(Valente et al (2011))
Results on a Madarin broadcast news transcription task, using
an HMM/GMM system
Explores many different acoustic features for the NN
Posteriorgram /bottleneck features alone (top)
Concatenating NN features with MFCCs (bottom)
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Autoencoders

@ An autoencoder is a neural network trained to map its input
into a distributed representation from which the input can be
reconstructed

@ Example: single hidden layer network, with an output the
same dimension as the input, trained to reproduce the input
using squared error cost function

1
E=—|ly —x|?
511y — x|

y: d dimension outputs

learned representation

x: d dimension inputs
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Autoencoder Bottlneck (AE-BN) Features

Cross-
entropy

(1)Deep (2) Auto-
Belief Network encoder
@ First train a “usual” DNN classifying acoustic input into 384
HMM states
@ Then train an autoencoder that maps the predicted output
vector to the target output vector
@ Use the bottleneck hidden layer in the autoencoder as features
for a GMM/HMM system
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Results using Autoencoder Bottlneck (AE-BN) Features

[TABLE 4] WER IN % ON ENGLISH BROADCAST NEWS.

50H 430 H

GMM-HMM GMM/HMM
LVCSR STAGE BASELINE  AE-BN BASELINE  AE-BN
FSA 24.8 20.6 20.2 17.6
+fBMMI 20.7 19.0 17.7 16.6
+BMMI 19.6 18.1 16.5 15.8
+MLLR 18.8 17.5 16.0 15.5
MODEL COMBINATION 16.4 15.0

Hinton et al (2012)
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e DNN/HMM systems (hybrid systems) give a significant
improvement over GMM/HMM systems
e Compared with 1990s NN/HMM systems, DNN/HMM
systems
e model context-dependent tied states with a much wider output
layer
o are deeper — more hidden layers
e can use correlated features (e.g. FBANK)
@ DNN features obtained from output layer (posteriorgram) or
hidden layer (bottleneck features) give a significant reduction
in WER when appended to acoustic features (e.g. MFCCs)
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