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HMM/NN vs HMM/GMM

Advantages of NN:
Can easily model correlated features

Correlated feature vector components (eg spectral features)
Input context – multiple frames of data at input

More flexible than GMMs – not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
NNs can model multiple events in the input simultaneously –
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)

Disadvantages of NN:
Until ∼ 2012:

Context-independent (monophone) models, weak speaker
adaptation algorithms
NN systems less complex than GMMs (fewer parameters):
RNN – < 100k parameters, MLP – ∼ 1M parameters

Computationally expensive - more difficult to parallelise
training than GMM systems
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Deep neural networks (DNNs) — Hybrid system

MFCC Inputs
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DNNs — what’s new?

Training multi-hidden layers directly with gradient descent is
difficult — sensitive to initialisation, gradients can be very
small after propagating back through several layers.
Unsupervised pretraining

Train a stacked restricted Boltzmann machine generative
model (unsupervised), then finetune with backprop
Contrastive divergence training

Layer-by-layer training
Successively train deeper networks, each time replacing output
layer with hidden layer and new output layer

Many hidden layers

GPUs provide the computational power

Wide output layer (context dependent phone classes)

GPUs provide the computational power

(Hinton et al 2012)
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Unsupervised pretraining

IEEE SIGNAL PROCESSING MAGAZINE   [87]   NOVEMBER 2012

INTERFACING A DNN WITH AN HMM
After it has been discriminatively fine-tuned, a DNN outputs 
probabilities of the form HMMstate AcousticInput( )p ; . But to 
compute a Viterbi alignment or to run the forward-backward 
algorithm within the HMM framework, we require the likeli-
hood (AcousticInput HMMstate)p ; . The posterior probabilities 
that the DNN outputs can be converted into the scaled likeli-
hood by dividing them by the frequencies of the HMM states in 
the forced alignment that is used for fine-tuning the DNN [9]. 
All of the likelihoods produced in this way are scaled by the 
same unknown factor of AcousticInput( )p , but this has no 
effect on the alignment. Although this conversion appears to 
have little effect on some recognition tasks, it can be important 
for tasks where training labels are highly unbalanced (e.g., with 
many frames of silences). 

PHONETIC CLASSIFICATION 
AND RECOGNITION ON TIMIT
The TIMIT data set provides a simple and convenient way of test-
ing new approaches to speech recognition. The training set is 
small enough to make it feasible to try many variations of a new 
method and many existing techniques have already been bench-
marked on the core test set, so it is easy to see if a new approach 
is promising by comparing it with existing techniques that have 
been implemented by their proponents [23]. Experience has 
shown that performance improvements on TIMIT do not neces-
sarily translate into performance improvements on large vocab-
ulary tasks with less controlled recording conditions and much 
more training data. Nevertheless, TIMIT provides a good start-

ing point for developing a new approach, especially one that 
requires a challenging amount of computation. 

Mohamed et. al. [12] showed that a DBN-DNN acoustic 
model outperformed the best published recognition results on 
TIMIT at about the same time as Sainath et. al. [23] achieved a 
similar improvement on TIMIT by applying state-of-the-art 
techniques developed for large vocabulary recognition. 
Subsequent work combined the two approaches by using state-
of-the-art, DT speaker-dependent features as input to the DBN-
DNN [24], but this produced little further improvement, 
probably because the hidden layers of the DBN-DNN were 
already doing quite a good job of progressively eliminating 
speaker differences [25]. 

The DBN-DNNs that worked best on the TIMIT data formed 
the starting point for subsequent experiments on much more 
challenging large vocabulary tasks that were too computational-
ly intensive to allow extensive exploration of variations in the 
architecture of the neural network, the representation of the 
acoustic input, or the training procedure. 

For simplicity, all hidden layers always had the same size, 
but even with this constraint it was impossible to train all possi-
ble combinations of number of hidden layers [1, 2, 3, 4, 5, 6, 7, 
8], number of units per layer [512, 1,024, 2,048, 3,072], and 
number of frames of acoustic data in the input layer [7, 11, 15, 
17, 27, 37]. Fortunately, the performance of the networks on 
the TIMIT core test set was fairly insensitive to the precise 
details of the architecture and the results in [13] suggest that 
any combination of the numbers in boldface probably has an 
error rate within about 2% of the very best combination. This 
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[FIG1] The sequence of operations used to create a DBN with three hidden layers and to convert it to a pretrained DBN-DNN. First, a 
GRBM is trained to model a window of frames of real-valued acoustic coefficients. Then the states of the binary hidden units of the 
GRBM are used as data for training an RBM. This is repeated to create as many hidden layers as desired. Then the stack of RBMs is 
converted to a single generative model, a DBN, by replacing the undirected connections of the lower level RBMs by top-down, directed 
connections. Finally, a pretrained DBN-DNN is created by adding a “softmax” output layer that contains one unit for each possible state 
of each HMM. The DBN-DNN is then discriminatively trained to predict the HMM state corresponding to the central frame of the input 
window in a forced alignment.

Hinton et al (2012)
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Example: hybrid HMM/DNN phone recognition (TIMIT)

Train a ‘baseline’ three state monophone HMM/GMM system
(61 phones, 3 state HMMs) and Viterbi align to provide DNN
training targets (time state alignment)

The HMM/DNN system uses the same set of states as the
HMM/GMM system — DNN has 183 (61*3) outputs

Hidden layers — many experiments, exact sizes not highly
critical

3–8 hidden layers
1024–3072 units per hidden layer

Multiple hidden layers always work better than one hidden
layer

Pretraining always results in lower error rates

Best systems have lower phone error rate than best
HMM/GMM systems (using state-of-the-art techniques such
as discriminative training, speaker adaptive training)
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Acoustic features for NN acoustic models

GMMs: filter bank features (spectral domain) not used as they
are strongly correlated with each other – would either require

full covariance matrix Gaussians
many diagonal covariance Gaussians

DNNs do not require the components of the feature vector to
be uncorrelated

Can directly use multiple frames of input context (this has
been done in NN/HMM systems since 1990!)
Can potentially use feature vectors with correlated components
(e.g. filter banks)

Experiments indicate that filter bank features result in greater
accuracy than MFCCs

ASR Lecture 12 Deep Neural Network Acoustic Models 10



TIMIT phone error rates: effect of depth and feature type

continuous features. A very important feature of neural networks
is their ”distributed representation” of the input, i.e., many neurons
are active simultaneously to represent each input vector. This makes
neural networks exponentially more compact than GMMs. Suppose,
for example, that N significantly different patterns can occur in one
sub-band andM significantly different patterns can occur in another.
Suppose also the patterns occur in each sub-band roughly indepen-
dently. A GMM model requires NM components to model this
structure because each component of the mixture must generate both
sub-bands; each piece of data has only a single latent cause. On the
other hand, a model that explains the data using multiple causes only
requiresN+M components, each of which is specific to a particular
sub-band. This property allows neural networks to model a diversity
of speaking styles and background conditions with much less train-
ing data because each neural network parameter is constrained by a
much larger fraction of the training data than a GMM parameter.

3.2. The advantage of being deep

The second key idea of DBNs is “being deep.” Deep acoustic mod-
els are important because the low level, local, characteristics are
taken care of using the lower layers while higher-order and highly
non-linear statistical structure in the input is modeled by the higher
layers. This fits with human speech recognition which appears to
use many layers of feature extractors and event detectors [7]. The
state-of-the-art ASR systems use a sequence of feature transforma-
tions (e.g., LDA, STC, fMLLR, fBMMI), cross model adaptation,
and lattice-rescoring which could be seen as carefully hand-designed
deep models. Table 1 compares the PERs of a shallow network with
one hidden layer of 2048 units modelling 11 frames of MFCCs to a
deep network with four hidden layers each containing 512 units. The
comparison shows that, for a fixed number of trainable parameters,
a deep model is clearly better than a shallow one.

Table 1. The PER of a shallow and a deep network.

Model 1 layer of 2048 4 layers of 512
dev 23% 21.9%
core 24.5% 23.6%

3.3. The advantage of generative pre-training

One of the major motivations for generative training is the belief
that the discriminations we want to perform are more directly related
to the underlying causes of the acoustic data than to the individual
elements of the data itself. Assuming that representations that are
good for modeling p(data) are likely to use latent variables that are
more closely related to the true underlying causes of the data, these
representations should also be good for modeling p(label|data).
DBNs initialize their weights generatively by layerwise training of
each hidden layer to maximize the likelihood of the input from the
layer below. Exact maximum likelihood learning is infeasible in net-
works with large hidden layers because it is exponentially expen-
sive to compute the derivative of the log probability of the training
data. Nevertheless, each layer can be trained efficiently using an
approximate training procedure called “contrastive divergence” [8].
Training a DBN without the generative pre-training step to model 15
frames of fbank coefficients caused the PER to jump by about 1%
as shown in figure(1). We can think of the generative pre-training
phase as a strong regularizer that keeps the final parameters close to
a good generative model. We can also think of the pre-training as

an optimization trick that initializes the parameters near a good local
maximum of p(label|data).
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Fig. 1. PER as a function of the number of layers.

4. WHICH FEATURES TO USE WITH DBNS

State-of-the-art ASR systems do not use fbank coefficients as the in-
put representation because they are strongly correlated so modeling
themwell requires either full covariance Gaussians or a huge number
of diagonal Gaussians which is computationally expensive at decod-
ing time. MFCCs offer a more suitable alternative as their individual
components tend to be independent so they are much easier to model
using a mixture of diagonal covariance Gaussians. DBNs do not
require uncorrelated data so we compared the PER of the best per-
forming DBNs trained with MFCCs (using 17 frames as input and
3072 hidden units per layer) and the best performing DBNs trained
with fbank features (using 15 frames as input and 2048 hidden units
per layer) as in figure 2. The performance of fbank features is about
1.7% better than MFCCs which might be wrongly attributed to the
fact that fbank features have more dimensions than MFCCs. Dimen-
sionality of the input is not the crucial property (see p. 3).
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Fig. 2. PER as a function of the number of layers.
To understand this result we need to visualize the input vectors

(i.e. a complete window of say 15 frames) as well as the learned hid-
den activity vectors in each layer for the two systems (DBNs with
8 hidden layers plus a softmax output layer were used for both sys-
tems). A recently introduced visualization method called “t-SNE”
[9] was used for producing 2-D embeddings of the input vectors
or the hidden activity vectors. t-SNE produces 2-D embeddings
in which points that are close in the high-dimensional vector space

(Mohamed et al (2012))
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Visualising neural networks

How to visualise NN layers? “t-SNE” (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions

t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces – the optimisation is over the positions of
points in the 2-d space
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Feature vector (input layer): t-SNE visualisation

are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.
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Fig. 3. t-SNE 2-D map of fbank feature vectors
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Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.
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Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.
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Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-
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Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
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To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

MFCC FBANK
(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
MFCCs are more scattered than FBANK
FBANK has more local structure than MFCCs
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First hidden layer: t-SNE visualisation
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Fig. 7. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using MFCC inputs.
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Fig. 8. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using MFCC inputs.

formed using the discrete cosine transform, which encourages decor-
related elements. We rank-order the dct features from lower-order
(slow-moving) features to higher-order ones. For the generative pre-
training phase, the dct features are disadvantaged because they are
not as strongly structured as the fbank features. To avoid a con-
founding effect, we skipped pre-training and performed the compar-
ison using only the fine-tuning from random initial weights. Table 2
shows PER for fbank, dct, and MFCC inputs (11 input frames and
1024 hidden units per layer) in 1, 2, and 3 hidden-layer neural net-
works. dct features are worse than both fbank features and MFCC
features. This prompts us to ask why a lossless transformation causes
the input representation to perform worse (even when we skip a gen-
erative pre-training step that favours more structured input), and how
dct features can be worse than MFCC features, which are a subset
of them. We believe the answer is that higher-order dct features are
useless and distracting because all the important information is con-
centrated in the first few features. In the fbank case the discriminant
information is distributed across all coefficients. We conclude that
the DBN has difficulty ignoring irrelevant input features. To test

this claim, we padded the MFCC vector with random noise to be of
the same dimensionality as the dct features and then used them for
network training (MFCC+noise row in table 2). The MFCC perfor-
mance was degraded by padding with noise. So it is not the higher
dimensionality that matters but rather how the discriminant informa-
tion is distributed over these dimensions.

Table 2. The PER deep nets using different features

Feature Dim 1lay 2lay 3lay
fbank 123 23.5% 22.6% 22.7%
dct 123 26.0% 23.8% 24.6%

MFCC 39 24.3% 23.7% 23.8%
MFCC+noise 123 26.3% 24.3% 25.1%

5. CONCLUSIONS

A DBN acoustic model has three main properties: It is a neural
network, it has many layers of non-linear features, and it is pre-
trained as a generative model. In this paper we investigated how
each of these three properties contributes to good phone recognition
on TIMIT. Additionally, we examined different types of input rep-
resentation for DBNs by comparing recognition rates and also by
visualising the similarity structure of the input vectors and the hid-
den activity vectors. We concluded that log filter-bank features are
the most suitable for DBNs because they better utilize the ability of
the neural net to discover higher-order structure in the input data.

6. REFERENCES

[1] H. Bourlard and N. Morgan, Connectionist Speech Recognition:
A Hybrid Approach, Kluwer Academic Publishers, 1993.

[2] H. Hermansky, D. Ellis, and S. Sharma, “Tandem connectionist
feature extraction for conventional HMM systems,” in ICASSP,
2000, pp. 1635–1638.

[3] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural Computation, vol. 18, no. 7,
pp. 1527–1554, 2006.

[4] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling us-
ing deep belief networks,” IEEE Transactions on Audio, Speech,
and Language Processing, 2011.

[5] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large vocabulary speech
recognition,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 2011.

[6] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. No-
vak, and A. Mohamed, “Making deep belief networks effective
for large vocabulary continuous speech recognition,” in ASRU,
2011.

[7] J.B. Allen, “How do humans process and recognize speech?,”
IEEE Trans. Speech Audio Processing, vol. 2, no. 4, pp. 567–
577, 1994.

[8] G. E. Hinton, “Training products of experts by minimizing con-
trastive divergence,” Neural Computation, vol. 14, no. 8, pp.
1711–1800, 2002.

[9] L.J.P. van der Maaten and G.E. Hinton, “Visualizing high-
dimensional data using t-sne,” Journal of Machine Learning
Research, vol. 9, pp. 2579–2605, 2008.

are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−150

−100

−50

0

50

100

150

 

 

Fig. 3. t-SNE 2-D map of fbank feature vectors
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Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.
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Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.
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Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

MFCC FBANK
(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
Hidden layer vectors start to align more between speakers for
FBANK

ASR Lecture 12 Deep Neural Network Acoustic Models 14



Eighth hidden layer: t-SNE visualisation
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Fig. 7. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using MFCC inputs.
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Fig. 8. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using MFCC inputs.

formed using the discrete cosine transform, which encourages decor-
related elements. We rank-order the dct features from lower-order
(slow-moving) features to higher-order ones. For the generative pre-
training phase, the dct features are disadvantaged because they are
not as strongly structured as the fbank features. To avoid a con-
founding effect, we skipped pre-training and performed the compar-
ison using only the fine-tuning from random initial weights. Table 2
shows PER for fbank, dct, and MFCC inputs (11 input frames and
1024 hidden units per layer) in 1, 2, and 3 hidden-layer neural net-
works. dct features are worse than both fbank features and MFCC
features. This prompts us to ask why a lossless transformation causes
the input representation to perform worse (even when we skip a gen-
erative pre-training step that favours more structured input), and how
dct features can be worse than MFCC features, which are a subset
of them. We believe the answer is that higher-order dct features are
useless and distracting because all the important information is con-
centrated in the first few features. In the fbank case the discriminant
information is distributed across all coefficients. We conclude that
the DBN has difficulty ignoring irrelevant input features. To test

this claim, we padded the MFCC vector with random noise to be of
the same dimensionality as the dct features and then used them for
network training (MFCC+noise row in table 2). The MFCC perfor-
mance was degraded by padding with noise. So it is not the higher
dimensionality that matters but rather how the discriminant informa-
tion is distributed over these dimensions.

Table 2. The PER deep nets using different features

Feature Dim 1lay 2lay 3lay
fbank 123 23.5% 22.6% 22.7%
dct 123 26.0% 23.8% 24.6%

MFCC 39 24.3% 23.7% 23.8%
MFCC+noise 123 26.3% 24.3% 25.1%

5. CONCLUSIONS

A DBN acoustic model has three main properties: It is a neural
network, it has many layers of non-linear features, and it is pre-
trained as a generative model. In this paper we investigated how
each of these three properties contributes to good phone recognition
on TIMIT. Additionally, we examined different types of input rep-
resentation for DBNs by comparing recognition rates and also by
visualising the similarity structure of the input vectors and the hid-
den activity vectors. We concluded that log filter-bank features are
the most suitable for DBNs because they better utilize the ability of
the neural net to discover higher-order structure in the input data.
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are also close in the 2-D space. It starts by converting the pairwise
distances, dij in the high-dimensional space to joint probabilities
pij ∝ exp(−d2

ij). It then performs an iterative search for corre-
sponding points in the 2-D space which give rise to a similar set of
joint probabilities. To cope with the fact that there is much more vol-
ume near to a high dimensional point than a low dimensional one,
t-SNE computes the joint probability in the 2-D space by using a
heavy tailed probability distribution qij ∝ (1 + d2

ij)
−1. This leads

to 2-D maps that exhibit structure at many scales [9].
For visualization only (they were not used for training or test-

ing), we used SA utterances from the TIMIT core test set speakers.
These are the two utterances that were spoken by all 24 different
speakers. Figures 3 and 4 show visualizations of fbank and MFCC
features for 6 speakers. Crosses refer to one utterance and circles re-
fer to the other one, while different colours refer to different speak-
ers. We removed the data points of the other 18 speakers to make the
map less cluttered.
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Fig. 3. t-SNE 2-D map of fbank feature vectors
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Fig. 4. t-SNE 2-D map of MFCC feature vectors
MFCC vectors tend to be scattered all over the space as they have

decorrelated elements while fbank feature vectors have stronger sim-
ilarities and are often aligned between different speakers for some

voiceless sounds (e.g. /s/, /sh/). This suggests that the fbank feature
vectors are easier to model generatively as the data have stronger
local structure than MFCC vectors. We can also see that DBNs are
doing some implicit normalization of feature vectors across different
speakers when fbank features are used because they contain both the
spoken content and style of the utterance which allows the DBN (be-
cause of its distributed representations) to partially separate content
and style aspects of the input during the pre-training phase. This
makes it easier for the discriminative fine-tuning phase to enhance
the propagation of content aspects to higher layers. Figures 5, 6, 7
and 8 show the 1st and 8th layer features of fine-tuned DBNs trained
with fbank and MFCC respectively. As we go higher in the network,
hidden activity vectors from different speakers for the same segment
align in both theMFCC and fbank cases but the alignment is stronger
in the fbank case.
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Fig. 5. t-SNE 2-D map of the 1st layer of the fine-tuned hidden
activity vectors using fbank inputs.
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Fig. 6. t-SNE 2-D map of the 8th layer of the fine-tuned hidden
activity vectors using fbank inputs.

To refute the hypothesis that fbank features yield lower PER
because of their higher dimensionality, we consider dct features,
which are the same as fbank features except that they are trans-

MFCC FBANK
(Mohamed et al (2012))

Visualisation of 2 utterances (cross and circle) spoken by 6
speakers (colours)
In the final hidden layer, the hidden layer outputs for the same
phone are well-aligned across speakers for both MFCC and FBANK
– but stronger for FBANK

ASR Lecture 12 Deep Neural Network Acoustic Models 15



Visualising neural networks

How to visualise NN layers? “t-SNE” (stochastic neighbour
embedding using t-distribution) projects high dimension
vectors (e.g. the values of all the units in a layer) into 2
dimensions
t-SNE projection aims to keep points that are close in high
dimensions close in 2 dimensions by comparing distributions
over pairwise distances between the high dimensional and 2
dimensional spaces – the optimisation is over the positions of
points in the 2-d space

Are the differences due to FBANK being higher dimension
(41 × 3 = 123) than MFCC (13 × 3 = 39)?

NO!
Using higher dimension MFCCs, or just adding noise to
MFCCs results in higher error rate
Why? – In FBANK the useful information is distributed over
all the features; in MFCC it is concentrated in the first few.
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Example: hybrid HMM/DNN large vocabulary
conversational speech recognition (Switchboard)

Recognition of American English conversational telephone
speech (Switchboard)

Baseline context-dependent HMM/GMM system

9,304 tied states
Discriminatively trained (BMMI — similar to MPE)
39-dimension PLP (+ derivatives) features
Trained on 309 hours of speech

Hybrid HMM/DNN system

Context-dependent — 9304 output units obtained from Viterbi
alignment of HMM/GMM system
7 hidden layers, 2048 units per layer

DNN-based system results in significant word error rate
reduction compared with GMM-based system

Pretraining not necessary on larger tasks (empirical result)

ASR Lecture 12 Deep Neural Network Acoustic Models 17



DNN vs GMM on large vocabulary tasks (Experiments
from 2012)

IEEE SIGNAL PROCESSING MAGAZINE   [92]   NOVEMBER 2012

and model-space discriminative training is applied using the 
BMMI or MPE criterion. 

Using alignments from a baseline system, [32] trained a 
DBN-DNN acoustic model on 50 h of data from the 1996 and 
1997 English Broadcast News Speech Corpora [37]. The 
 DBN-DNN was trained with the 
best-performing LVCSR features, 
specifically the SAT+DT features. 
The DBN-DNN architecture con-
sisted of six hidden layers with 
1,024 units per layer and a final 
softmax layer of 2,220 context-
dependent states. The SAT+DT 
feature input into the first layer 
used a context of nine frames. 
Pretraining was performed fol-
lowing a recipe similar to [42]. 

Two phases of fine-tuning were performed. During the first 
phase, the cross entropy loss was used. For cross entropy train-
ing, after each iteration through the whole training set, loss is 
measured on a held-out set and the learning rate is annealed 
(i.e., reduced) by a factor of two if the held-out loss has grown 
or improves by less than a threshold of 0.01% from the previ-
ous iteration. Once the learning rate has been annealed five 
times, the first phase of fine-tuning stops. After weights are 
learned via cross entropy, these weights are used as a starting 
point for a second phase of fine-tuning using a sequence crite-
rion [37] that utilizes the MPE objective function, a discrimi-
native objective function similar to MMI [7] but which takes 
into account phoneme error rate. 

A strong SAT+DT GMM-HMM baseline system, which con-
sisted of 2,220 context-dependent states and 50,000 Gaussians, 
gave a WER of 18.8% on the EARS Dev-04f set, whereas the 
DNN-HMM system gave 17.5% [50]. 

SUMMARY OF THE MAIN RESULTS FOR 
DBN-DNN ACOUSTIC MODELS ON LVCSR TASKS
Table 3 summarizes the acoustic modeling results described 
above. It shows that DNN-HMMs consistently outperform 
GMM-HMMs that are trained on the same amount of data, 
sometimes by a large margin. For some tasks, DNN-HMMs 
also outperform GMM-HMMs that are trained on much 
more data. 

SPEEDING UP DNNs AT RECOGNITION TIME
State pruning or Gaussian selection methods can be used to 
make GMM-HMM systems computationally efficient at recogni-
tion time. A DNN, however, uses virtually all its parameters at 
every frame to compute state likelihoods, making it potentially 

much slower than a GMM with a 
comparable number of parame-
ters. Fortunately, the time that a 
DNN-HMM system requires to 
recognize 1 s of speech can be 
reduced from 1.6 s to 210 ms, 
without decreasing recognition 
accuracy, by quantizing the 
weights down to 8 b and using 
the very fast SIMD primitives for 
fixed-point computation that are 
provided by a modern x86 cen-

tral processing unit [49]. Alternatively, it can be reduced to 
66 ms by using a graphics processing unit (GPU). 

ALTERNATIVE PRETRAINING METHODS FOR DNNs
Pretraining DNNs as generative models led to better recognition 
results on TIMIT and subsequently on a variety of LVCSR tasks. 
Once it was shown that DBN-DNNs could learn good acoustic 
models, further research revealed that they could be trained in 
many different ways. It is possible to learn a DNN by starting with 
a shallow neural net with a single hidden layer. Once this net has 
been trained discriminatively, a second hidden layer is interposed 
between the first hidden layer and the softmax output units and 
the whole network is again discriminatively trained. This can be 
continued until the desired number of hidden layers is reached, 
after which full backpropagation fine-tuning is applied. 

This type of discriminative pretraining works well in prac-
tice, approaching the accuracy achieved by generative DBN pre-
training and further improvement can be achieved by stopping 
the discriminative pretraining after a single epoch instead of 
multiple epochs as reported in [45]. Discriminative pretraining 
has also been found effective for the architectures called “deep 
convex network” [51] and “deep stacking network” [52], where 
pretraining is accomplished by convex optimization involving 
no generative models. 

Purely discriminative training of the whole DNN from ran-
dom initial weights works much better than had been thought, 

provided the scales of the initial 
weights are set carefully, a large 
amount of labeled training data is 
available, and minibatch sizes over 
training epochs are set appropri-
ately [45], [53]. Nevertheless, gen-
erative pretraining still improves 
test performance, sometimes by a 
significant amount. 

Layer-by-layer generative pre-
training was originally done 
using RBMs, but various types of 

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND 
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK 
HOURS OF 
TRAINING DATA DNN-HMM

GMM-HMM 
WITH SAME DATA

GMM-HMM 
WITH MORE DATA

SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H) 

SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H) 

ENGLISH BROADCAST NEWS 50 17.5 18.8 

BING VOICE SEARCH 
(SENTENCE ERROR RATES) 24 30.4 36.2 

GOOGLE VOICE INPUT 5,870 12.3 16.0 (22 5,870 H)

YOUTUBE 1,400 47.6 52.3 

DISCRIMINATIVE PRETRAINING
HAS ALSO BEEN FOUND EFFECTIVE 
FOR THE ARCHITECTURES CALLED 
“DEEP CONVEX NETWORK”  AND 

“DEEP STACKING NETWORK,” WHERE 
PRETRAINING IS ACCOMPLISHED BY 
CONVEX OPTIMIZATION INVOLVING 

NO GENERATIVE MODELS.

(Hinton et al (2012))
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Neural Network Features
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Tandem features (posteriorgrams)

Use NN probability estimates as an additional input feature
stream in an HMM/GMM system —- (Tandem features (i.e.
NN + acoustics), posteriorgrams)

Advantages of tandem features

can be estimated using a large amount of temporal context (eg
up to ±25 frames)
encode phone discrimination information
only weakly correlated with PLP or MFCC features

Tandem features: reduce dimensionality of NN outputs using
PCA, then concatenate with acoustic features (e.g. MFCCs)

PCA also decorrelates feature vector components – important
for GMM-based systems
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Tandem features

IEEE SIGNAL PROCESSING MAGAZINE [82] SEPTEMBER 2005

recognition systems (SRSs), particularly in the context of the
conversational telephone speech recognition task. This ultimate-
ly would require both a revamping of acoustical feature extrac-
tion and a fresh look at the incorporation of these features into
statistical models representing speech. So far, much of our effort
has gone towards the design of new features and experimentation
with their incorporation in a modern speech-to-text system. The
new features have already provided significant improvements in
such a system in the 2004 NIST evaluation of recognizers of con-
versational telephone speech. The development of statistical
models to best incorporate the long time features is being
explored, but development is still in its early stages. 

BACKGROUND 
Mainstream speech recognition systems typically use a signal
representation derived from a cepstral transformation of a
short-term spectral envelope. This dependence on the spectral
envelope for speech sound discrimination dates back to the
1950s, as described in [11]. In turn, this style of analysis can be
traced back to the 1930s vocoder experiments of Homer Dudley
[14]. Perhaps more fundamentally, many speech scientists have
observed the relationship between the spectral components of
speech sounds and their phonetic identity. They have further
characterized these sounds by their correspondence to the state
of the speech articulators and the resulting resonances (for-
mants). By this view, one should use pattern recognition tech-
niques to classify new instances of speech sounds based on
their proximity in some spectral (or cepstral) space to speech
sounds collected for training the system. Modern statistical
speech recognition systems are fundamentally elaborations on

this principle; individual training examples are not used direct-
ly for calculating distances but rather are used to train models
that represent statistical distributions. The Markov chains that
are at the heart of these models represent the temporal aspect
of speech sounds and can accommodate differing durations for
particular instances. The overall structure provides a consistent
mathematical framework that can incorporate powerful learn-
ing methods such as maximum likelihood training using expec-
tation maximization [12]. Systems using short-term cepstra for
acoustic features and first-order Markov chains for the acoustic
modeling have been successful both in the laboratory and in
numerous applications, ranging from cell phone voice dialing
to dialog systems for use in call centers.

Despite these successes, there are still significant limita-
tions to speech recognition performance, particularly for con-
versational speech and/or for speech with significant acoustic
degradations from noise or reverberation. For this reason, we
have proposed methods that incorporate different (and larger)
analysis windows, which will be described below. We note in
passing that we and many others have already taken advantage
of processing techniques that incorporate information over
long time ranges, for instance for normalization (by cepstral
mean subtraction [2] or relative spectral analysis (RASTA)
[18]). We also have proposed features that are based on speech
sound class posterior probabilities, which have good properties
for both classification and stream combination.

TEMPORAL REPRESENTATIONS FOR EARS 
Our goal is to replace (or augment) the current notion of a
spectral-energy-based vector at time t with variables based on

[FIG1] Posterior-based feature generation system. Each posterior stream is created by feeding a trained multilayer perceptron (MLP)
with features that have different temporal and spectral extent. The “PLP Net” is trained to generate phone posterior estimates given
roughly 100 ms of telephone bandwidth speech after being processed by PLP analysis over nine frames. HATs processing is trained for
the same goal given 500 ms of log-critical band energies. The two streams of posteriors are combined (in a weighted sum where each
weight is a scaled version of local stream entropy) and transformed as shown to augment the more traditional PLP features. The
augmented feature vector is used as an observation by the Gaussian mixture hidden Markov model (GMHMM) system.
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Morgan et al (2005)
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Bottleneck features

OPTIMIZING BOTTLE-NECK FEATURES FOR LVCSR
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ABSTRACT

This work continues in development of the recently proposed
Bottle-Neck features for ASR. A five-layers MLP used in bottle-
neck feature extraction allows to obtain arbitrary feature size without
dimensionality reduction by transforms, independently on the MLP
training targets. The MLP topology – number and sizes of layers,
suitable training targets, the impact of output feature transforms, the
need of delta features, and the dimensionality of the final feature vec-
tor are studied with respect to the best ASR result. Optimized fea-
tures are employed in three LVCSR tasks: Arabic broadcast news,
English conversational telephone speech and English meetings. Im-
provements over standard cepstral features and probabilistic MLP
features are shown for different tasks and different neural net in-
put representations. A significant improvement is observed when
phoneme MLP training targets are replaced by phoneme states and
when delta features are added.

Index Terms— Bottle-neck, MLP structure, features, LVCSR

1. INTRODUCTION

Features for ASR obtained from neural networks have recently be-
come a component of state-of-the-art recognition systems [1]. They
are typically obtained by projecting a larger time span of a critical-
band spectrogram onto posterior probabilities of phoneme classes
using multi-layer perceptron (MLP). That is why they are sometimes
referred to as probabilistic features. In order to better fit the sub-
sequent Gaussian mixture model, the MLP estimates of posteriors
are logarithmized and decorrelated by Principal Components Analy-
sis (PCA) or Heteroscedastic Linear Discriminant Analysis (HLDA),
which also allows to reduce their dimensionality.

The performance of probabilistic features is often below that of
standard cepstral features. However, due to their different nature,
they exhibit a large amount of complementary information. The role
of the probabilistic features in ASR is thus to augment the cepstral
features. This is especially the case of TRAP-based probabilistic
features [2], where the input to the MLP is formed by temporal tra-
jectories of energies in independent critical bands. Since their intro-
duction, several modifications targeting the input spectrogram [3, 4],
the MLP structure [5] and MLP training targets [6] were proposed.
Despite all the effort, probabilistic features have not consistently out-

This work was partly supported by European IST projects AMIDA (FP6-033812)
and Caretaker (FP6-027231), by Grant Agency of Czech Republic under project No.
102/08/0707, by Czech Ministry of Education under project No. MSM0021630528,
and by the DARPA GALE program, Contract No. HR0011-06-C-0022. The hardware
used in this work was partially provided by CESNET under projects No. 162/2005 and
No. 201/2006.
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Fig. 1. Block diagram of the Bottle-Neck feature extraction with
TRAP-DCT raw features at the MLP input.

performed cepstral features and are being used only as their comple-
ment.

This misfortune seems to have ended last year with the introduc-
tion of the Bottle-Neck (BN) features [7]. BN features use five-layers
MLP with a narrow layer in the middle (bottle-neck). The fundamen-
tal difference between probabilistic and BN features is that the latter
are not derived from the class posteriors. Instead, they are obtained
as linear outputs of the neurons in the bottle-neck layer. This struc-
ture makes the size of the features independent of the number of the
MLP training targets. Hence it is easy to replace the phoneme targets
by finer and more numerous sub-phoneme classes, while retaining a
small feature vector without a need of a dimensionality reduction.
The bottle-neck MLP training process is the same as for probabilis-
tic features and employs all five layers. During feature extraction
only the first three layers are involved. It is illustrated in Fig. 1.

This work continues in the development of the BN features by
experimenting with the topology of the MLP (number of layers and
their sizes) as described in section 3.1. Section 3.2 evaluates the
contribution of switching from phoneme to sub-phoneme training
targets. Section 3.3 questions the necessity of decorrelating the fea-
tures prior to GMM-HMM modeling by PCA or HLDA transforms.
Finally, section 3.4 experiments with augmenting BN features by
their temporal derivatives in the same way it is commonly done to
cepstral features.

2. EXPERIMENTAL SETUP

Experiments were carried out on three LVCSR tasks using two in-
dependent MLP implementations, three independent HMM imple-
mentations and three different MLP raw input features in order to
provide a better objectivity in conclusions.

2.1. Raw Features for MLP

The purpose of the neural network in the BN system is to transform
a certain representation of speech into output features. The speech

Grezl and Fousek (2008)

Use a “bottleneck” hidden layer to provide features for a
HMM/GMM system

Decorrelate the hidden layer using PCA (or similar)
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Experimental comparison of tandem and bottleneck
features
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Figure 2: (Top plot) Stand-alone feature performance of various speech signal representations (noted on the X-axis) when used as input to three-layer
MLP, bottleneck, hierarchical and multi-stream architectures. The down plot reports the feature performances when used in concatenation with MFCC.

three-layer perceptron. The performances of the various MLP
front-ends are summarized in Figures 2 as stand-alone features
(top plot) and in concatenation with MFCC (down plot).

Figure 2 (top plot) reveals that, when a three-layer MLP
is used, none of the long temporal inputs (MRASTA, DCT-
TRAPS, wLP-TRAPS, and their augmented versions) outper-
form the conventional TANDEM-PLP nor the MFCC base-
line. On the other hand, replacing the three-layer MLP with a
bottleneck or hierarchical architecture (while keeping constant
the total number of parameters) considerably reduces the error,
achieving a CER lower than the MFCC baseline. The lowest
CER is obtained by the multi-stream architecture which com-
bines outputs of MLPs trained on long and short temporal con-
texts improving by 10% relative over the MFCC baseline.

Figures 2 (down plot) reports CER obtained in concate-
nation with MFCC and reveals that, even when their perfor-
mances are poor as stand-alone front-end, three-layer MLP
features based on long temporal spans always appear to pro-
vide complementary information to the MFCC with improve-
ments in the range of 10-14% relative. When the three-
layer MLP is replaced with bottleneck or hierarchical archi-
tectures, the improvements are increased to the range of 16-
18%. The various methods for encoding the information (DCT-
TRAPS, MRASTA, wLP-TRAPS) perform equally well when
augmented with pitch and energy. It is interesting to notice that,
in concatenation with MFCC, the lowest CER is obtained by
the bottleneck/hierarchical architectures rather then the multi-
stream features (see previous section for explanation).

Table 5 summarizes the improvements that modifications
to the three-layer MLP can produce with respect to the original
TANDEM-PLP features. As stand-alone front-end, the lowest
CER is produced by multi-stream features (+10% relative over
the MFCC baseline, compared to +1% obtained by TANDEM-
PLP); in concatenation with MFCC, the lowest CER is pro-
duced by bottleneck/hierarchical architectures (+18% relative,
compared to +14% obtained by TANDEM-PLP, over the MFCC
baseline)2.

2This work was supported by the the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR0011-06-C-0023 and
by the Swiss National Science Fundation through IM2 grant. Authors
would like to thanks colleagues involved in the GALE project at IDIAP,

Table 5: Summary Table of CER and improvements.
TANDEM Multistream

MLP 25.5 (+1%) 23.1 (+10%)
TANDEM Hier/Bottleneck

MLP+MFCC 22.2 (+14%) 21.2 (+18%)
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(Valente et al (2011))

Results on a Madarin broadcast news transcription task, using
an HMM/GMM system

Explores many different acoustic features for the NN

Posteriorgram/bottleneck features alone (top)

Concatenating NN features with MFCCs (bottom)
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Autoencoders

An autoencoder is a neural network trained to map its input
into a distributed representation from which the input can be
reconstructed

Example: single hidden layer network, with an output the
same dimension as the input, trained to reproduce the input
using squared error cost function

….

….

….
y:  d dimension outputs

x:  d dimension inputs

learned representation

E = �1

2
||y � x||2

ASR Lecture 12 Deep Neural Network Acoustic Models 24



Autoencoder Bottlneck (AE-BN) Features

Broadcast News task [11]. First, we show that pre-trained and deeper
networks which allow for improvements in hybrid DBN systems also
improve the AE-BN features. Second, we show that using AE-BN
features alone offer a 1.3% absolute improvement over a state-of-
the-art [7] speaker-adapted, discriminatively trained GMM/HMM
baseline and 0.9% absolute improvement over a hybrid DBN sys-
tem. To our knowledge, this is the first use of bottleneck features
to offer improvements over a GMM/HMM baseline system when
the same features used in the baseline system are also used to gen-
erate AE-BN features. Taking the lessons learned on the 50-hour
task, we then explore AE-BN features on a larger 430-hour Broad-
cast News task, where we observe that the AE-BN features offer a
0.5% improvement over a strong GMM/HMM baseline with a WER
of 16.0%. Finally, system combination of the AE-BN and baseline
systems provides an additional 0.5% absolute improvement over the
AE-BN system alone, giving a final WER of 15.0%.

The rest of this paper is organized as follows. Section 2 de-
scribes the AE-BN system. Section 3 summarizes the experiments
performed, while the analysis of AE-BN features on 50-hours of
Broadcast News is presented in Section 4. Results using AE-BN
features on 430-hour of Broadcast News is presented in Section 5
while system combination results are discussed in Section 6. Finally,
Section 7 concludes the paper and discusses future work.

2. BOTTLENECK AUTO-ENCODER

2.1. Feature Extraction

A diagram of our bottleneck auto-encoder (AE-BN) system is de-
picted in Figure 1. First, given a set of input features, a DBN is
pre-trained and then fine-tuned using backpropagation to minimize
the cross-entropy between the set of target and hypothesized class
probabilities. In this DBN architecture, the user specifies number of
layers, number of hidden units per layer (i.e., 1024) and number of
output targets (i.e., 384). This first step is similar to DBN training
done for speech recognition applications [6], [7].

After DBN training, a neural network auto-encoder (AE) with a
BN layer of 40 is trained to reduce the dimensionality of the output
targets. The input to the AE is the 384 unnormalized log-posterior
probabilities taken before the softmax output layer. We use two lay-
ers to reduce 384 output targets to 40, where each layer reduces the
dimensionality of the previous layer by roughly a factor of three.
A softsign nonlinearity (y = x/(1 + |x|)) is used between layers,
which has been shown to be effective when training DBNs [10]. The
training criterion for the AE is the cross-entropy between the nor-
malized posteriors produced by processing the AE input and output
through a softmax. Once the AE is trained, we extract features using
the DBN weights and the weights of the AE up to the 40-dimensional
bottleneck before the softsign nonlinearity. As in [3], an LDA is ap-
plied to these features and then a GMM/HMM acoustic model is
built from these features.

2.2. Acoustic Model Training

A typical state-of-the-art LVCSR system [7] utilizes a specific recipe
during acoustic model training which makes use of feature-space
speaker adaptation (FSA), including vocal tract length normalization
(VTLN) and feature space Maximum Likelihood Linear Regression
(fMLLR), followed by discriminative training (DT). Each additional
stage in this recipe typically uses more powerful modeling tech-
niques. Bottleneck features are a type of frame-level discriminative
feature when the cross-entropy training criterion is used to train the

1024

sigmoid

...

384

128

sosftsign

40

384

softmax

cross-
entropy

input

softmax

sosftsign

(1) Deep
Belief Network

(2) Auto-
encoder

AE-BN
features

Fig. 1. Structure of DBN and Bottleneck Auto-Encoder. The dotted
boxes indicate modules that are trained separately.

DBN [11]. However, discriminative training of GMM/HMM sys-
tems can be thought of as a sequence-level discriminative technique,
since typically this objective function is created from a set of correct
and competing hypotheses of the training data. Since speech recog-
nition is a sequence-level problem, usually sequence-level discrim-
inative methods have been shown to be more powerful than frame-
level discriminative methods [11].

FSA move speech features into a canonical feature space. We
hypothesize that extracting AE-BN features before FSA and then
subsequently applying FSA would undo some of the frame-level dis-
crimination in the AE-BN features. Similarly, if AE-BN features are
created after fBMMI, then some of the sequence-level discrimination
might be undone. With this intuition, we decide to create our AE-
BN features after the FSA stage, where we still obtain the benefits
of a canonical feature space without undoing any sequence-level dis-
crimination. After AE-BN features are extracted and a GMM/HMM
system is trained via maximum-likelihood on these features, we then
apply feature and model-space DT. In Section 4.2, we show experi-
ments to support our intuition of creating AE-BN features after FSA.

2.3. System Combination

BN features derived from NNs are usually complementary to base-
line systems built from typical short-time speech features. There-
fore, combining BN and baseline systems, either through tandem [3]
or model-combination [10], is typically done to improve system per-
formance. Even though our AE-BN features are extracted from a
DBN built using short-time speech features, we hypothesize that the
deepness of the DBN transforms the original speech features into a
new space which could be complementary to the original features.
In this paper, we explore model-combination, a system combination
approach where the acoustic scores are computed as a weighted lin-
ear combination of scores from the two or more systems that can
have different decision trees.

3. EXPERIMENTS

3.1. Corpora

Our experiments are conducted on an English Broadcast News tran-
scription task [11]. Two different acoustic models are used which are

4154

First train a “usual” DNN classifying acoustic input into 384
HMM states
Then train an autoencoder that maps the predicted output
vector to the target output vector
Use the bottleneck hidden layer in the autoencoder as features
for a GMM/HMM system
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After the training of the first DBN-DNN terminated, the final 
set of weights was used for generating the 384 logits at the out-
put layer. A second 384-128-40-384 DBN-DNN was then trained 
as an autoencoder to reduce the dimensionality of the output 
logits. The GMM-HMM system that used the feature vectors 
produced by the AE-BN was trained using feature and model 
space discriminative training. Both pretraining and the use of 
deeper networks made the AE-BN features work better for rec-
ognition. To fairly compare the performance of the system that 
used the AE-BN features with the baseline GMM-HMM system, 
the acoustic model of the AE-BN features was trained with the 
same number of states and Gaussians as the baseline system. 

Table 4 shows the results of 
the AE-BN and baseline systems 
on both 50- and 430-h, for dif-
ferent steps in the LVCSR recipe 
described in the section “English 
Broadcast News Speech Rec -
ognition Task.” On 50-h, the 
AE-BN system offers a 1.3% absolute improvement over the 
baseline GMM-HMM system, which is the same improvement 
as the DBN-DNN, while on 430-h the AE-BN system provides a 
0.5% improvement over the baseline. The 17.5% WER is the 
best result to date on the Dev-04f task, using an acoustic model 
trained on 50 h of data. Finally, the complementarity of the 
AE-BN and baseline  methods is explored by performing model 
combination on both the 50- and 430-h tasks. Table 4 shows 
that model-combination provides an additional 1.1% absolute 
improvement over individual systems on the 50-h task, and a 
0.5% absolute improvement over the individual systems on the 
430-h task, confirming the complementarity of the AE-BN and 
baseline systems. 

USING DNNs TO ESTIMATE ARTICULATORY FEATURES 
FOR DETECTION-BASED SPEECH RECOGNITION
A recent study [65] demonstrated the effectiveness of DBN-
DNNs for detecting subphonetic speech attributes (also known 
as phonological or articulatory features [66]) in the widely 
used The Wall Street Journal speech database (5k-WSJ0). 
Thirteen MFCCs plus first- and second-temporal derivatives 
were used as the short-time spectral representation of the 
speech signal. The phone labels were derived from the forced 
alignments generated using a GMM-HMM system trained with 
ML, and that HMM system had 2,818 tied-state, crossword tri-

phones, each modeled by a mixture of eight Gaussians. The 
attribute labels were generated by mapping phone labels to 
attributes, simplifying the overlapping characteristics of the 
articulatory features. The 22 attributes used in the recent 
work, as reported in [65], are a subset of the articulatory fea-
tures explored in [66] and [67]. 

DBN-DNNs achieved less than half the error rate of shallow 
neural nets with a single hidden layer. DNN architectures with 
five to seven hidden layers and up to 2,048 hidden units per 
layer were explored, producing greater than 90% frame-level 
accuracy for all 21 attributes tested in the full DNN system. On 
the same data, DBN-DNNs also achieved a very high per frame 

phone classification accuracy of 
86.6%. This level of accuracy for 
detecting subphonetic funda-
mental speech units may allow a 
new family of flexible speech 
 recognition and understanding 
systems that make use of phono-

logical features in the full detection-based framework dis-
cussed in [65]. 

SUMMARY AND FUTURE DIRECTIONS
When GMMs were first used for acoustic modeling, they were 
trained as generative models using the EM algorithm, and it 
was some time before researchers showed that significant gains 
could be achieved by a subsequent stage of discriminative train-
ing using an objective function more closely related to the ulti-
mate goal of an ASR system [7], [68]. When neural nets were 
first used, they were trained discriminatively. It was only recent-
ly that researchers showed that significant gains could be 
achieved by adding an initial stage of generative pretraining that 
completely ignores the ultimate goal of the system. The pre-
training is much more helpful in deep neural nets than in shal-
low ones, especially when limited amounts of labeled training 
data are available. It reduces overfitting, and it also reduces the 
time required for discriminative fine-tuning with backpropaga-
tion, which was one of the main impediments to using DNNs 
when neural networks were first used in place o f GMMs in the 
1990s. The successes achieved using pretraining led to a resur-
gence of interest in DNNs for acoustic modeling. 
Retrospectively, it is now clear that most of the gain comes from 
using DNNs to exploit information in neighboring fram es and 
from modeling tied context-dependent states. Pretraining is 
helpful in reducing overfitting, and it does reduce the time 
taken for fine-tuning, but similar reductio ns in training time 
can be achieved with less effort by careful choice of the scales of 
the initial random weights in e ach layer. 

The first method to be used for pretraining DNNs was to 
learn a stack of RBMs, one per hidden  layer of the DNN. An 
RBM is an undirected generative model that uses binary latent 
variables, but training  it by ML is expensive, so a much faster, 
approximate method called CD is used. This method has strong 
similarities to training an autoencod er network (a nonlinear 
version of PCA) that converts each datapoint into a code from 

THE SUCCESSES ACHIEVED USING 
PRETRAINING LED TO A RESURGENCE 

OF INTEREST IN DNNS FOR 
ACOUSTIC MODELING.

[TABLE 4] WER IN % ON ENGLISH BROADCAST NEWS.

50 H 430 H

LVCSR STAGE 
GMM-HMM 
BASELINE AE-BN

GMM/HMM 
BASELINE AE-BN

FSA 24.8 20.6 20.2 17.6 

+fBMMI 20.7 19.0 17.7 16.6 

+BMMI 19.6 18.1 16.5 15.8 

+MLLR 18.8 17.5 16.0 15.5 

MODEL COMBINATION 16.4 15.0

Hinton et al (2012)
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Summary

DNN/HMM systems (hybrid systems) give a significant
improvement over GMM/HMM systems

Compared with 1990s NN/HMM systems, DNN/HMM
systems

model context-dependent tied states with a much wider output
layer
are deeper – more hidden layers
can use correlated features (e.g. FBANK)

DNN features obtained from output layer (posteriorgram) or
hidden layer (bottleneck features) give a significant reduction
in WER when appended to acoustic features (e.g. MFCCs)
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