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Neural Networks
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Supervised training (stochastic gradient descent),
classification (associating features with classes)
Multi-layered

Hidden layer - weighted sum of inputs, followed by sigmoid
transfer function
Output layer - softmax (1-from-N classification)
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Historical Perspective
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The Perceptron

F Rosenblatt – late 1950s, early 1960s
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The first “neural network winter” (late 1960s – mid 1980s)

Work in AI focused on rule-based systems and logic from the late
1960s to the mid 1980s

xor
Minsky and Papert’s book (Perceptrons) explored the capabilities and

limitations of neural networks mathematically – but was perceived to

show that perceptrons were unable to model some functions and were

hence unsuitable for AI
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Hidden Markov Models

However, the “cybernetic underground” developed statistical
models during the 1970s...
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MLPs and backprop (mid-late 1980s)
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Train multiple layers of non-linear units
– nested non-linear functions
(f (g(. . .)))

Powerful feature detectors
Estimate class-conditional posterior
probabilities
Theorem: network with a single
hidden layer can approximate any
function

ASR Lecture 11 Neural Networks for Acoustic Modelling 7



Neural network acoustic models (1990s)

4000 Hidden Units

54 Output Units

x(t-4) x(t-3) x(t-2) x(t-1) x(t) x(t+1) x(t+2) x(t+3) x(t+4)

(13 x 2 x 9) = 234 Input Units

(234 x 4000) = 936 000 weights

(4000 x 54) = 216 000 weights

P(phone | data)The Big Dumb
Neural Network

Similar performance to
context-dependent HMM/GMM
systems on read speech (WSJ)

More errors on more complex
tasks (broadcast news,
conversational telephone speech)

Lacked effective approaches for
context-dependent modelling and
adaptation

Training not easily parallelisable

Slower experimental turnaround
Smaller, less complex systems

“Second NN winter” – focus on
GMMs, support vector machines,
conditional random fields, ...
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(Deep) neural network acoustic models (2010s)

Input layer

Hidden layer 1

Hidden layer H-1

Output layer

Hidden layer H

. . .

Multiple frames of input
context: Input layer takes
several consecutive frames of
acoustic features

One big network for
everything, rather than
multiple HMMs: Output layer
corresponds to classes (e.g.
phones, HMM states)

Potential deep structure:
Multiple non-linear hidden
layers between input and output
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Hybrid NN/HMM Systems
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Using neural networks for acoustic modelling

Hybrid NN/HMM systems

Basic idea: in an HMM, replace the GMMs used to estimate
output pdfs with the outputs of neural networks
NN outputs correspond to phone classes or HMM states, and
estimate the probability of the class

Tandem features

Use NN probability estimates as an additional input feature
stream in an HMM/GMM system (posteriograms / bottleneck
features)
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Neural networks for phone classification

1 hidden layer

~1000 hidden units

39 phone classes

9x39 MFCC inputs

x(t-4) x(t-3) x(t) x(t+3) x(t+4)… …
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Neural networks for phone classification

Phone recognition task – e.g. TIMIT corpus

630 speakers (462 train, 168 test) each reading 10 sentences
(usually use 8 sentences per speaker, since 2 sentences are the
same for all speakers)
Speech is labelled by hand at the phone level (time-aligned)
61-phone set, usually reduced to 39 phones

Phone recognition tasks

Frame classification – classify each frame of data
Phone classification – classify each segment of data
(segmentation into unlabelled phones is given)
Phone recognition – segment the data and label each segment
(the usual speech recognition task)

Frame classification – straightforward with a neural network

train using labelled frames
test a frame at a time, assigning the label to the output with
the highest score
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Neural networks and posterior probabilities

Moving from frame classification to phone recognition

Interpret the NN outputs as frame scores
Use dynamic programming (Viterbi) to compute the most
likely sequence of phone segments

Posterior probability estimation: Consider a neural network
trained as a classifier – each output corresponds to a class.
When applying a trained network to test data, it can be
shown that the value of output corresponding to class q given
an input x, is an estimate of the posterior probability P(q|x)
Using Bayes Rule we can relate the posterior P(q|x) to the
likelihood p(x|q) used as an output probability in an HMM:

P(q|x) =
p(x|q)P(q)

p(x)

(this is assuming 1 state per phone q)
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Scaled likelihoods

If we would like to use NN outputs as output probabilities in
an HMM, then we would like probabilities (or densities) of the
form p(x|q) – likelihoods.
We can write scaled likelihoods as:

P(q|x)

p(q)
=

p(x|q)

p(x)

Scaled likelihoods can be obtained by “dividing by the priors”
– divide each network output P(q|x) by P(q), the relative
frequency of class q in the training data

Using p(x|q)/p(x) rather than p(x|q) is OK since p(x) does
not depend on the class q

We can use the scaled likelihoods obtained from a neural
network in place of the usual likelihoods obtained from a
GMM
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Hybrid NN/HMM

If we have a K -state HMM system, then we train a K -output
NN to estimate the scaled likelihoods used in a hybrid system

For TIMIT, using a 1 state per phone systems, we obtain
scaled likelihoods from a NN trained to classify phones

For continuous speech recognition we can use:

1 state per phone models
3 state CI models (so we would have an NN with 39× 3 = 117
outputs)
State-clustered models, with one NN output per tied state
(this can lead to networks with many outputs!)

Scaled likelihood and dividing by the priors

One can interpret computing the scaled likelihoods as factoring
out the prior estimates for each phone based on the acoustic
training data. The HMM can then integrate better prior
estimates based on the language model and lexicon
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Hybrid NN/HMM
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Monophone HMM/NN hybrid system (1993)
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Monophone HMM/NN hybrid system (1998)

Utterance
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Broadcast news transcription (1998) – 20.8% WER

(best GMM-based system, 13.5%)

Cook et al, DARPA, 1999
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HMM/NN vs HMM/GMM

Advantages of NN:
Can easily model correlated features

Correlated feature vector components (eg spectral features)
Input context – multiple frames of data at input

More flexible than GMMs – not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
NNs can model multiple events in the input simultaneously –
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)

Disadvantages of NN:
Until ∼ 2012:

Context-independent (monophone) models, weak speaker
adaptation algorithms
NN systems less complex than GMMs (fewer parameters):
RNN – < 100k parameters, MLP – ∼ 1M parameters

Computationally expensive - more difficult to parallelise
training than GMM systems
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Reading

M Nielsen, Neural Networks and Deep Learning,
http://neuralnetworksanddeeplearning.com

N Morgan and H Bourlard (May 1995). “Continuous speech
recognition: An introduction to the hybrid
HMM/connectionist approach”, IEEE Signal Processing
Magazine, 12(3), 24–42.
http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=382443

Next lecture: Deep neural network acoustic models
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