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Pronunciation dictionary

@ Words and their pronunciations provide the link between
sub-word HMMs and language models

@ Written by human experts

@ Typically based on phones
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@ Selection of the words in the dictionary—want to ensure high
coverage of words in test data
@ Representation of the pronunciation(s) of each word
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Pronunciation dictionary

Words and their pronunciations provide the link between
sub-word HMMs and language models

Written by human experts

Typically based on phones

Constructing a dictionary involves
@ Selection of the words in the dictionary—want to ensure high
coverage of words in test data
@ Representation of the pronunciation(s) of each word

Explicit modelling of pronunciation variation
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Out-of-vocabulary (OOV) rate

@ OOV rate: percent of word tokens in test data that are not
contained in the ASR system dictionary

@ Training vocabulary requires pronunciations for all words in
training data (since training requires an HMM to be
constructed for each training utterance)

@ Select the recognition vocabulary to minimize the OOV rate
(by testing on development data)

@ Recognition vocabulary may be different to training vocabulary

@ Empirical result: each OOV word results in 1.5-2 extra errors
(>1 due to the loss of contextual information)
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Multilingual aspects

@ Many languages are morphologically richer than English: this
has a major effect of vocabulary construction and language
modelling

e Compounding (eg German): decompose compund words into
constituent parts, and carry out pronunciation and language
modelling on the decomposed parts

e Highly inflected languages (eg Arabic, Slavic languages):
specific components for modelling inflection (eg factored
language models)

@ Inflecting and compounding languages (eg Finnish)

@ All approaches aim to reduce ASR errors by reducing the
OOV rate through modelling at the morph level; also
addresses data sparsity
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Vocabulary size for different languages
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M. Creutz et al, “Morph-based speech recognition and modeling OOV words across languages”, ACM Trans

Speech and Language Processing, 5(1), art. 3. http://doi.acm.org/10.1145/1322391.1322394
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OOQV Rate for different languages
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Single and multiple pronunciations

@ Words may have multiple pronunciations:
@ Accent, dialect: tomato, zebra

global changes to dictionary based on consistent pronunciation
variations

@ Phonological phenomena: handbag/ h ae m b ae g
I can't stay / [ah k ae n s t ay]
© Part of speech: project, excuse
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© Part of speech: project, excuse

@ This seems to imply many pronunciations per word, including:
@ Global transform based on speaker characteristics

@ Context-dependent pronunciation models, encoding of
phonological phenomena
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Single and multiple pronunciations

@ Words may have multiple pronunciations:
@ Accent, dialect: tomato, zebra

global changes to dictionary based on consistent pronunciation
variations

@ Phonological phenomena: handbag/ h ae m b ae g
I can't stay / [ah k ae n s t ay]
© Part of speech: project, excuse
@ This seems to imply many pronunciations per word, including:
@ Global transform based on speaker characteristics

@ Context-dependent pronunciation models, encoding of
phonological phenomena

@ BUT state-of-the-art large vocabulary systems average about

1.1 pronunciations per word: most words have a single
pronunciation
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Consistency vs Fidelity

@ Empirical finding: adding pronunciation variants can result in
reduced accuracy

@ Adding pronunciations gives more “flexibility” to word models
and increases the number of potential ambiguities—more
possible state sequences to match the observed acoustics
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Consistency vs Fidelity

@ Empirical finding: adding pronunciation variants can result in
reduced accuracy

@ Adding pronunciations gives more “flexibility” to word models
and increases the number of potential ambiguities—more
possible state sequences to match the observed acoustics

@ Speech recognition uses a consistent rather than a faithful
representation of pronunciations

@ A consistent representation requires only that the same word
has the same phonemic representation (possibly with
alternates): the training data need only be transcribed at the
word level

@ A faithful phonemic representation requires a detailed
phonetic transcription of the training speech (much too
expensive for large training data sets)
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Modelling pronunciation variability

@ State-of-the-art systems absorb variations in pronunciation in
the acoustic models

o Context-dependent acoustic models may be though of as
giving broad class representation of word context

@ Cross-word context dependent models can implicitly represent
cross-word phonological phenomena

@ Hain (2002): a carefully constructed single pronunciation
dictionary (using most common alignments) can result in a
more accurate system than a multiple pronunciation dictionary
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Current topics in pronunciation modelling

@ Automatic learning of pronunciation variations or alternative
pronunciations for some words — e.g. learning probability
distribution over possible pronunciations generated by
grapheme-to-phoneme models

e Automatic learning of pronunciations of new words based on
an initial seed lexicon

@ Joint learning of the inventory of subword units and the
pronunciation lexicon

@ Sub-phonetic / articulatory feature model

@ Grapheme-based modelling: model at the character level and
remove the problem of pronunciation modelling entirely
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Mathematical framework

HMM Framework for speech recognition. Let W be the universe of
possible utterances, and X be the observed acoustics, then we
want to find:

w* = argmmaij(W | X)

P(X | W)P(W)
P(X)

= arg max P(X | W)P(W)

= arg max
8 w
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Mathematical framework

HMM Framework for speech recognition. Let W be the universe of
possible utterances, and X be the observed acoustics, then we
want to find:

W+ = argmmaij(W | X)

P(X | W)P(W)
P(X)

= arg max P(X | W)P(W)

= arg max
& w

Words are composed of a sequence of HMM states Q:

W* = arg max P(X | Q,W)P(Q,W)
f:argmvax%: P(X | Q)P(Q | W)P(W)

~ argmvaxmgxP(X | Q)P(Q | W)P(W)
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Three levels of model

e Acoustic model P(X | Q)
Probability of the acoustics given the phone states:
context-dependent HMMs using state clustering, phonetic
decision trees, etc.

e Pronunciation model P(Q | W)
Probability of the phone states given the words; may be as
simple a dictionary of pronunciations, or a more complex
model

e Language model P(W)
Probability of a sequence of words. Typically an n-gram
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Language modelling

@ Basic idea The language model is the prior probability of the
word sequence P(W)

@ Use a language model to disambiguate between similar
acoustics when combining linguistic and acoustic evidence
never mind the nudist play / never mind the new display

@ Use hand constructed networks in limited domains

@ Statistical language models: cover “ungrammatical”
utterances, computationally efficient, trainable from huge
amounts of data, can assign a probability to a sentence
fragment as well as a whole sentence
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Statistical language models

For use in speech recognition a language model must be:
statistical, have wide coverage, and be compatible with
left-to-right search algorithms

Only a few grammar-based models have met this requirement
(eg Chelba and Jelinek, 2000), and do not yet scale as well as
simple statistical models

Until very recently n-grams were the state-of-the-art
language model for ASR

Unsophisticated, linguistically implausible

Short, finite context

Model solely at the shallow word level

But: wide coverage, able to deal with “ungrammatical”
strings, statistical and scaleable

Probability of a word depends only on the identity of that
word and of the preceding n-1 words. These short sequences
of n words are called n-grams.
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Bigram language model

@ Word sequence W = wy, wo, ... wy
P(W) = P(Wl)P(W2 ‘ W1)P(W3 | wi, W2)
ce P(WM ‘ Wi, Wo, ... WM,1)
@ Bigram approximation—consider only one word of context:

P(W) ~ P(W]_)P(W2 ’ W1)P(W3 | W2)... P(WM | WM—l)
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Bigram language model

@ Word sequence W = wy, wo, ... wy

P(W) = P(w1)P(wa | wi)P(ws | wi, wp)
o Plwy | wa, wa, .o wpy—1)
@ Bigram approximation—consider only one word of context:
P(W) ~ P(wy)P(wy | wi)P(ws | wo) ... P(wy | wy—1)
@ Parameters of a bigram are the conditional probabilities
P(w; | w;)
@ Maximum likelihood estimates by counting:
c(wj, wi)
c(wj)
where c(w;j, w;) is the number of observations of w; followed

by w;, and c(w;) is the number of observations of w;
(irrespective of what follows)

P(wi|w;) ~
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The zero probability problem

@ Maximum likelihood estimation is based on counts of words in
the training data

@ If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

@ The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

@ As n grows larger, so the data grow sparser, and the more
zero counts there will be
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The zero probability problem

@ Maximum likelihood estimation is based on counts of words in
the training data

@ If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

@ The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

@ As n grows larger, so the data grow sparser, and the more
zero counts there will be

@ Solution: smooth the probability estimates so that unobserved
events do not have a zero probability

@ Since probabilities sum to 1, this means that some probability
is redistributed from observed to unobserved n-grams
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Smoothing language models

@ What is the probability of an unseen n-gram?
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Smoothing language models

@ What is the probability of an unseen n-gram?
@ Add-one smoothing: add one to all counts and renormalize.
e “Discounts” non-zero counts and redistributes to zero counts
e Since most n-grams are unseen (for large n more types than
tokens!) this gives too much probability to unseen n-grams
(discussed in Manning and Schiitze)
@ Absolute discounting: subtract a constant from the observed
(non-zero count) n-grams, and redistribute this subtracted
probability over the unseen n-grams (zero counts)

@ Kneser-Ney smoothing: family of smoothing methods based
on absolute discounting that are at the state of the art
(Goodman, 2001)
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Backing off

@ How is the probability distributed over unseen events?

@ Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

@ Use successively less context: trigram — bigram — unigram

@ Back-off models redistribute the probability “freed” by
discounting the n-gram counts
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Backing off

@ How is the probability distributed over unseen events?

@ Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

@ Use successively less context: trigram — bigram — unigram

@ Back-off models redistribute the probability “freed” by
discounting the n-gram counts

@ For a bigram

hwi)—D .
P(w; | w)) = % if c(wj,w;) > c
= P(w;)by, otherwise

¢ is the count threshold, and D is the discount. by, is the
backoff weight required for normalization
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Interpolation

Basic idea: Mix the probability estimates from all the
estimators: estimate the trigram probability by mixing
together trigram, bigram, unigram estimates

Simple interpolation

A

P(Wn | Wn—2, anl) =
)\3P(Wn | Wn—2, anl) + )\2P(Wn | anl) =+ )‘1P(Wn)
With S0, = 1

Interpolation with coefficients conditioned on the context

A

P(Wn ’ Wn-2, Wn—l) =
)\3(Wn—2> Wn—l)P(Wn ’ Wn—2, Wn—1)+
)\2(an27 anl)P(Wn | anl) + )\1(an27 anl)P(Wn)

Set A values to maximise the likelihood of the interpolated

language model generating a held-out corpus (possible to use
EM to do this)
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Perplexity

Measure the quality of a language model by how well it
predicts a test set W (i.e. estimated probability of word
sequence)

Perplexity (PP(W)) — inverse probability of the test set WV,
normalized by the number of words N

PP(W) = P(W)T = P(wiws...wy) N
Perplexity of a bigram LM
PP(W) = (P(W]_)P(WQ’W]_)P(W3‘W2) e P(W/\/’W/\/,l))iw:l

Example perplexities for different n-gram LMs trained on Wall
St Journal (38M words)

e Unigram — 962

e Bigram - 170

e Trigram — 109
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Practical language modelling

@ Work in log probabilities

@ The ARPA language model format is commonly used to store
n-gram language models (unless they are very big)

@ Many toolkits: SRILM, IRSTLM, KenLM, Cambridge-CMU
toolkit, ...

@ Some research issues:

e Advanced smoothing
Adaptation to new domains
Incorporating topic information
Long-distance dependencies
Distributed representations
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Neural Probabilistic Language Model

Bengio 2003
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Recurrent Neural Network Language Model

w(t) y(t)

s(t-1)
Mikolov et al (2010,2011) - state of the art performance
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