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Overview

HMMs and GMMs

o Key models and algorithms for HMM acoustic models
@ Gaussians

o GMMs: Gaussian mixture models

@ HMMs: Hidden Markov models

e HMM algorithms

o Likelihood computation (forward algorithm)
e Most probable state sequence (Viterbi algorithm)
o Estimting the parameters (EM algorithm)
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Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is

given by
W* = arg max P(W | X)

Applying Bayes' Theorem:
p(X|W) P(W)
p(X)
x p(X|W) P(W)
W* = argmax p(X|W) P(W)
W ~— — ——

Acoustic Language
model model
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Acoustic Model: Continuous Density HMM

P(sy | s1) P(s> | 52) P(s3 | s3)

X X X

Probabilistic finite state automaton
Paramaters A:
o Transition probabilities: ax; = P(S=/j|S=k)
e Output probability density function: bj(x) = p(x|S =)
NB: Some textbooks use Q or g to denote the state variable S.
x corresponds to o: in Lecture slides 02.
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Acoustic Model: Continuous DenS|ty HMM
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Probabilistic finite state automaton

Paramaters A:
o Transition probabilities: ax; = P(S=/j|S=k)
e Output probability density function: bj(x) = p(x|S =)
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x corresponds to o: in Lecture slides 02.
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HMM Assumptions

s(t)

y

s(t+1) b——ovu-p

Y

— s

@ @ NB: unfolded version over time

@ Markov process: The probability of a state depends only on the
previous state: P(S(t)|S(t—1),5(t—2),...,5(1)) = P(5(t)|S(t—-1))

A state is conditionally independent of all other states given the previous

state

@ Observation independence: The output observation x(t) depends
only on the state that produced the observation:
p(x(£)|S(t), S(t-1),..., SA), x(t~1), ..., x(1)) = p(x(t) | S(t))
An acoustic observation x is conditionally independent of all other
observations given the state that generated it
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Output distribution
: :P(51|51)

@ Single multivariate Gaussian with mean p;, covariance matrix X;:
bj(x) = p(x[S=Jj) = N(x; ), ;)
@ M-component Gaussian mixture model:
M
bj(x) = p(x|S=)) =" Gm N (X; tjm, Zjm)
@ Neural network: "
bj(x) ~ P(§=j|x)/P(S5=,j) NB: NN outputs posterior probabiliies
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Background: cdf

Consider a real valued random variable X

e Cumulative distribution function (cdf) F(x) for X:
F(x) = P(X < x)

@ To obtain the probability of falling in an interval we can do
the following:

Pla< X <b)=P(X <b)—P(X<a)
= F(b) - F(2)
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Background: pdf

@ The rate of change of the cdf gives us the probability density
function (pdf), p(x):

p) = S F(x) = F'(x)

F(x) = / " p(x)dx

—00

@ p(x) is not the probability that X has value x. But the pdfis
proportional to the probability that X lies in a small interval
centred on x.

e Notation: p for pdf, P for probability
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The Gaussian distribution (univariate)

@ The Gaussian (or Normal) distribution is the most common
(and easily analysed) continuous distribution

@ It is also a reasonable model in many situations (the famous
“bell curve™)

o If a (scalar) variable has a Gaussian distribution, then it has a
probability density function with this form:

C(x — )2
P(X\M,g2):/\/’(x;u,g2):\/%exp( ( M))

202

@ The Gaussian is described by two parameters:

o the mean p (location)
o the variance o2 (dispersion)
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Plot of Gaussian distribution

@ Gaussians have the same shape, with the location controlled
by the mean, and the spread controlled by the variance

@ One-dimensional Gaussian with zero mean and unit variance
(p=0,0%=1):

pdf of Gaussian Distribution

mean=0
variance=1

0.4

0.351

03

0.251

0.2

p(xIm,s)

0.151

01

0.05
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Properties of the Gaussian distribution

) = g ()

pdfs of Gaussian distributions
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Parameter estimation

@ Estimate mean and variance parameters of a Gaussian from
data x1,x0, ..., xT

@ Use the following as the estimates:

1 T
= T th (mean)
t=1
1 T
52 = = (x¢ — f1)? (variance)
t=1
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Exercise — maximum likelihood estimation (MLE)

Consider the log likelihood of a set of T training data points
{x1,...,x7} being generated by a Gaussian with mean p and
variance o2

T o — 2
L=Inp({x1,...,x7}|p 0%) = —%Z <w —Ino? - |n(27r)>
t=1

T
:—M;(Xt—,u) —EInO' —§|n(27'r)

By maximising the the log likelihood function with respect to u
show that the maximum likelihood estimate for the mean is indeed
the sample mean:
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The multivariate Gaussian distribution

@ The D-dimensional vector x = (xq,...,xp)" follows a
multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:

p(x|p, X) = (27r)D/12]2|1/2 exp (—;(X —p) = (x - u))

The pdf is parameterized by the mean vector p = (p1, ..., up)"
J11 e g1D

and the covariance matrix X =
Jp1 . JppD

@ The 1-dimensional Gaussian is a special case of this pdf

@ The argument to the exponential 0.5(x — p) "7 (x — p) is
referred to as a quadratic form.
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Covariance matrix

@ The mean vector p is the expectation of x:
p = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

% = E[(x — p)(x — ) ]

@ X isa D x D symmetric matrix:

oj = E[(xi = 1) 05 — )] = El(x — w)(xi = pi)] = o3

@ The sign of the covariance helps to determine the relationship
between two components:
o If x; is large when x; is large, then (x; — pi)(xj — ;) will tend
to be positive;
o If x; is small when x; is large, then (x; — ;)(x; — ;) will tend
to be negative.
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Spherical Gaussian

Contour plot of p(x,, X,)

Surtace plot of p(x,, x,) 4

P, %,)

0 10
(3) (D) e
NB: Correlation coefficient p; = /. (—1<p;j<1)
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Diagonal Covariance Gaussian

Contour plot of p(x,, X,)

Surtace plot of p(x,, x,) 4

0 10
(3) = (38) e

NB: Correlation coefficient p; = /. (—1<p;j<1)

ASR Lectures 4&5 19



Full covariance Gaussian

Contour plot of p(x,, X,)

Surtace plot of p(x,, x,) 4

0 1 -1
(3) =(1) e

NB: Correlation coefficient p; = /. (—1<p;j<1)
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Parameter estimation of a multivariate Gaussian

distribution

@ It is possible to show that the mean vector f1 and covariance
matrix X that maximize the likelihood of the training data are

given by:
L1
= — Xt
2
L 17 -
= 237 (e~ )(xe — )
t=1
where x; = (x¢1,...,x0) "

NB: T denotes either the number of samples or vector
transpose depending on context.
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Example data

5 L L L L L L
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Maximum likelihood fit to a Gaussian

5 L L L L L
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Data in clusters (example 1)
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k-means clustering

@ k-means is an automatic procedure for clustering unlabelled
data

Requires a prespecified number of clusters

Clustering algorithm chooses a set of clusters with the
minimum within-cluster variance

Guaranteed to converge (eventually)

Clustering solution is dependent on the initialisation
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k-means example: data set

A
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k-means example: initialization
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k-means example: iteration 1 (assign points to clusters)

A
4,13)
10
29
(7.8)
7.6)
5 (10,5)
8,4)
0 \(100) .
0 5 10
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k-means example: iteration 1 (recompute centres)

®@4.13)

*
(4.33,10)
9

7.8

©6)" °.6)

°@45) (10,5)
‘G4 64 K
* (8.75,3.75)
. G573)
(12) (5.2)

‘wy o *e

(10,0)

ASR Lectures 4&5 30



k-means example: iteration 2 (assign points to clusters)

A
10
(7.8)
5 (10,5)
0 (10,0) .
0 5 10

ASR Lectures 4&5 31



k-means example: iteration 2 (recompute centres)

A
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k-means example: iteration 3 (assign points to clusters)

A
10
(7.8)
5 (10,5)
0 (10,0) .
0 5 10

No changes, so converged
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Mixture model

A more flexible form of density estimation is made up of a
linear combination of component densities:

M
p(x) =D p(x|m)P(m)
m=1
This is called a mixture model or a mixture density
p(x|m) : component densities

P(m) : mixing parameters

Generative model:

© Choose a mixture component based on P(m)
@ Generate a data point x from the chosen component using

p(x|m)
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Gaussian mixture model

@ The most important mixture model is the Gaussian Mixture Model
(GMM), where the component densities are Gaussians

o Consider a GMM, where each component Gaussian N(x; By Xm)

has mean ., and a spherical covariance 3, = 0,2,7I

p(x) = 3 P(m) x| m) = >~ P(m) Ax: s 0% 1)

px)
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Component occupation probability

@ We can apply Bayes' theorem:

Pl — PXIM ) plx|m) P(m)

p(x) Sy p(x|m')P(m)

@ The posterior probabilities P(m|x) give the probability that
component m was responsible for generating data point x

@ The P(m|x)s are called the component occupation
probabilities (or sometimes called the responsibilities)

@ Since they are posterior probabilities:

iP(m|x) =1

m=1
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Parameter estimation

@ If we knew which mixture component was responsible for a
data point:
e we would be able to assign each point unambiguously to a
mixture component
e and we could estimate the mean for each component Gaussian
as the sample mean (just like k-means clustering)
e and we could estimate the covariance as the sample covariance

@ But we don't know which mixture component a data point
comes from...

@ Maybe we could use the component occupation probabilities
P(m|x) ?
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GMM Parameter estimation when we know which

component generated the data

@ Define the indicator variable z,,; = 1 if component m
generated data point x; (and 0 otherwise)

@ If z,;+ wasn't hidden then we could count the number of
observed data points generated by m:

.
Ny = szt
t=1
@ And estimate the mean, variance and mixing parameters as:
= Dt ZmeXe
m =
N,
A2
s2 _ 2ae ZmtlXe—fom|
O =
Nim

A 1 N,
P(m) = 722mt =7
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Soft assignment

@ Estimate “soft counts” based on the component occupation
probabilities P(m|x;):

T

Ny =D P(m[x:)

t=1
@ We can imagine assigning data points to component m
weighted by the component occupation probability P(m|x;)

@ So we could imagine estimating the mean, variance and prior
probabilities as:

2 PUmlxe)xe 2, P(m|xe)x:

An = 5= P(mixe) N,
52 _ L P(mlxdllxe—fiml® _ X, P(mxe) lIxe— fm]?
" Zt P(m|xt) /V,’;7
N Nm
P( TZP m‘xt) T
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EM algorithm

@ Problem! Recall that:
Pz — PEIMP(m) _ plx|m)P(m)
p(x) > m—1 P(x|m)P(m)
We need to know p(x|m) and P(m) to estimate the
parameters of P(m|x), and to estimate P(m)....
@ Solution: an iterative algorithm where each iteration has two
parts:

o Compute the component occupation probabilities P(m|x)
using the current estimates of the GMM parameters (means,
variances, mixing parameters) (E-step)

o Computer the GMM parameters using the current estimates of
the component occupation probabilities (M-step)

e Starting from some initialization (e.g. using k-means for the
means) these steps are alternated until convergence

@ This is called the EM Algorithm and can be shown to
maximize the likelihood
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Maximum likelihood parameter estimation

@ The likelihood of a data set X = {x1,x2,...,x7} is given by:
T T M
£ =TLp(xe) =[] 3 p(xe|m) P(m)
t=1 t=1 m=1
@ We can regard the negative log likelihood as an error function:

o Considering the derivatives of E with respect to the
parameters, gives expressions like the previous slide
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Example 1 fit using a GMM

251

L L L L L L ,
-1.5 -1 -0.5 0 05 1 15 2

Fitted with a two component GMM using EM
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Peakily distributed data (Example 2)

pr=p2=1[00 07 ;=01 X=2I
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Example 2 fit by a Gaussian

pr=p2=1[00 07 ;=01 X=2I
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Example 2 fit by a GMM

Fitted with a two component GMM using EM
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Example 2: component Gaussians

4 4
.
3 3
2 0e 8 2
.

2 2

3 3

X 3 2 1 ) 1 2 3 4 % 4
P(x|m=1)
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Comments on GMMs

o GMMs trained using the EM algorithm are able to self
organize to fit a data set

@ Individual components take responsibility for parts of the data
set (probabilistically)

@ Soft assignment to components not hard assignment — “soft
clustering”

@ GMMs scale very well, e.g.: large speech recognition systems
can have 30,000 GMMs, each with 32 components:
sometimes 1 million Gaussian components!! And the
parameters all estimated from (a lot of) data by EM
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Back to HMMs...
: :P(51|51)

Output distribution:
@ Single multivariate Gaussian with mean p;, covariance matrix X;:

bj(x) = p(x|S=j) = N(x; pj, %))

@ M-component Gaussian mixture model:

bi(x) = p(x|S=]) = 3 cim N (X: jm: Sim)

m=1
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

@ Likelihood Determine the overall likelihood of an observation

sequence X = (X1,...,X¢,...,XT) being generated by an
HMM.

@ Decoding Given an observation sequence and an HMM,
determine the most probable hidden state sequence

© Training Given an observation sequence and an HMM, learn
the best HMM parameters A = {{aj}, {b;()}}

ASR Lectures 4&5 49



1. Likelihood: how to calculate?

states

trellis

time
X, Xg Xg X, observations
P(X, path,[A) = P(X|path,, A) P(path, | X)
= P(X|s05151515252535354, ) P(S0S151515252535354 | A)
= by (x1) b1 (x2) b1 (x3) b2 (x4) b2 (x5) b3 (x6) b3(X7) ap1 a11 11 212322323333 334
P(X|A)= > P(X,path,[A) =~ maxP(X,path,|X)
{pathe} path,

forward(backward) algorithm  Viterbi algorithm
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1. Likelihood: The Forward algorithm

e Goal: determine p(X|A)
@ Sum over all possible state sequences s1s;...s7 that could
result in the observation sequence X

@ Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

e Hown many paths calculations in p(X|A)?

~ NxNx---N =NT N : number of HMM states
—_— .
T times T : length of observation

eg. N7 ~ 10% for N=3, T=20
o Computation complexity of multiplication: O(2T NT)
e The Forward algorithm reduces this to O( TN?)
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Recursive algorithms on HMMs

Visualize the problem as a state-time trellis
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1. Likelihood: The Forward algorithm

e Goal: determine p(X|A)

@ Sum over all possible state sequences s1s; ... s7 that could
result in the observation sequence X

@ Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

@ Forward probability, a+(j): the probability of observing the
observation sequence Xj ...X; and being in state j at time t:

ar(j) = p(x1,. .., xe, S(t)=j|A)
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1. Likelihood: The Forward recursion

@ Initialization

@ Recursion
N
ar(j) = ara(i)agb(xe) 1<j<N,1<t<T
i=1
@ Termination
N
p(X|A) = ar(se) = > ar(i)ae
i=1

s;: initial state, sg: final state
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1. Likelihood: Forward Recursion

at(j):p(xlv"'vxta |)‘) Zat 1 alj
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Viterbi approximation

@ Instead of summing over all possible state sequences, just
consider the most likely

@ Achieve this by changing the summation to a maximisation in
the recursion:

Ve(j) = max Vi—1(1)aijbj(xt)

@ Changing the recursion in this way gives the likelihood of the
most probable path

@ We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path
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Viterbi Recursion

Vi(j) = max Vio1(i)aijbj(xt)

Likelihood of the most probable path




Viterbi Recursion

Backpointers to the previous state on the most probable path
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2. Decoding: The Viterbi algorithm

@ Initialization
Vo(i)
Vo(J)
bto(J)

1
0 ifj#i
0

@ Recursion

. N .
Vi(j) = max Vie1(7)aijbj(xt)

1=

. N .
bt:(j) = arg max Vi—1(i)ajibj(x¢)

@ Termination

P* = VT(SE) = m_A;IJlx \/T( i)a,-E

* N .
sT =btr(ge) = arg max Vr(i)aie
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Viterbi Backtrace

Backtrace to find the state sequence of the most probable path

t—1 t t+1
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3. Training: Forward-Backward algorithm

o Goal: Efficiently estimate the parameters of an HMM X from
an observation sequence
@ Assume single Gaussian output probability distribution

bj(x) = p(x|j) = N(x; pj, Zj)

@ Parameters A:
e Transition probabilities aj;:

Za,'j:l
J

o Gaussian parameters for state j:
mean vector p;; covariance matrix X;
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Viterbi Training

o If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state

@ A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding

e Maximum likelihood estimate of aj;, if C(7 — /) is the count
of transitions from / to j

5. C(i—j)
T Cli— k)
o Likewise if Z; is the set of observed acoustic feature vectors

assigned to state j, we can use the standard maximum
likelihood estimates for the mean and the covariance:

ZXEZJ' X

~

IJ,': E——
T 1zl

g _ 2xeg (X Z)x— ap)’
T |2l
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EM Algorithm

Viterbi training is an approximation—we would like to
consider all possible paths
In this case rather than having a hard state-time alignment we
estimate a probability
State occupation probability: The probability :(j ) of
occupying state j at time t given the sequence of
observations.
Compare with component occupation probability in a GMM
We can use this for an iterative algorithm for HMM training:
the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm")
Each iteration has two steps:
E-step estimate the state occupation probabilities
(Expectation)
M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)
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Backward probabilities

@ To estimate the state occupation probabilities it is useful to
define (recursively) another set of probabilities—the Backward
probabilities

Bt(./) = p(xt—l-lv <oy XT ‘ S(t):.lv >‘)
The probability of future observations given a the HMM is in

state j at time t
@ These can be recursively computed (going backwards in time)
o Initialisation

Br(i) = aie
o Recursion
N
ﬂt(l) = Z a;jbj(xt+1)5t+1(j) fort = T—]., ey 1
j=1

o Termination
N
pP(X|A) = Bo(1) = Z ajbj(x1)B1(J) = ar(se)
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Backward Recursion

Be(J)

= p(Xtt1,. .-, x7[S(t) =/, A) = Zau (xt+1)Be+1(J)

t-1 t t+1

Bt+l( i)

Bt+1(j)

Bt+1( k)



State Occupation Probability

e The state occupation probability +;( ) is the probability of
occupying state j at time t given the sequence of observations
@ Express in terms of the forward and backward probabilities:

Ye(4) = S(t)=j[X,A) = a(4)Be(J)

recalling that p(X|A) = at(sk)
@ Since

1
aT(sE)

ae(j)Be(J) = p(x1, ... xe, S(t) =j|A)
p(Xt41, .., XT|S(t)=4,A)
= p(X1y .-y Xty Xty - -0, XT, S(E) =4 | A)
=p(X,5(t)=Jj|A)

P(S(t)=j|X,A) = P(vas(g(t?;flk)
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Re-estimation of Gaussian parameters

@ The sum of state occupation probabilities through time for a
state, may be regarded as a “soft” count

@ We can use this “soft” alignment to re-estimate the HMM
parameters:

i = 2;1 Ye(J )Xt
’ Zthl Ye(J)
_ S xe — ) (x — )"

b :
Zthl ’Yt(J)
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Re-estimation of transition probabilities

@ Similarly to the state occupation probability, we can estimate
&t( i, j), the probability of being in i at time t and j at
t + 1, given the observations:

&e(i,j)=P(S(t)=i,S(t+1)=j[X, )
p(S(t)=1i,S(t+1)=/,X|A)
p(X|A)
ae(i)ajbj(xt41)Ber1(J)
aT(sE)

@ We can use this to re-estimate the transition probabilities

s &)
LYl k)
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Pulling it all together

o lterative estimation of HMM parameters using the EM
algorithm. At each iteration
E step For all time-state pairs
© Recursively compute the forward probabilities
a(J) and backward probabilities 5;(j)
@ Compute the state occupation probabilities

Ye(J) and &(i j)

M step Based on the estimated state occupation
probabilities re-estimate the HMM parameters:
mean vectors p;, covariance matrices X; and
transition probabilities aj;

@ The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm
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Extension to a corpus of utterances

o We usually train from a large corpus of R utterances

o If x{ is the tth frame of the rth utterance X" then we can

compute the probabilities af(j ), B1(Jj), vi(Jj) and &L(7, j)
as before

@ The re-estimates are as before, except we must sum over the
R utterances, eg:

R T .
f = >ore1 D=1 Vi (J)X;
] R T .
D1 2oe=1 ()
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Extension to Gaussian mixture model (GMM)

@ The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

@ In this case an M-component Gaussian mixture model is an
appropriate density function:

bj(x) = p(x|S=) chm N(%; tjm, Zjm)
m=1

Given enough components, this family of functions can model
any distribution.

@ Train using the EM algorithm, in which the component
estimation probabilities are estimated in the E-step
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EM training of HMM/GMM

Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities v:(j, m): the probability of
occupying mixture component m of state j at time t.

(&tm(j) in Jurafsky and Martin's SLP)

We can thus re-estimate the mean of mixture component m
of state j as follows

T .
G = Doe—1 e(J, m)x:
jm = T ;
Zt:l ’Yt(./ ) m)
And likewise for the covariance matrices (mixture models

often use diagonal covariance matrices)
The mixture coefficients are re-estimated in a similar way to

transition probabilities: T _
D=1 (S, m)

M T .
Zm/:l Zt:l Ye(J, m')
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Doing the computation

@ The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

@ This can cause floating point underflow problems

@ In practice computations are performed in the log domain (in
which multiplies become adds)

@ Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians
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A note on HMM topology

485 Gepss UE

left—to-right model  parallel path left-to-right model  ergodic model

air a2 a3 0 O a1 ar a;z a4 as
a1 a2 O 0 ax ax an 0 a1 ax az ax ax
0 axn ax 0 O a3 axu ass as1 a3 a3 a4 as
0 0 as3 0 0 O as ass d41 842 aA43 Aa44 Aas
0 0 0 0 ass ds1 as2 as3 dsa dss

Speech recognition:  left-to-right HMM with 3 ~ 5 states
Speaker recognition: ergodic HMM
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A note on HMM emission probabilities

884

b(x b(x)[/v\b(x

emission pdfs

Emission prob.
Continuous (density) HMM | continuous density | GMM, NN/DNN
Discrete (probability) HMM | discrete probability | VQ
Semi-continuous HMM continuous density | tied mixture
(tied-mixture HMM)
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Summary: HMMs

@ HMMs provide a generative model for statistical speech
recognition
@ Three key problems

@ Computing the overall likelihood: the Forward algorithm

@ Decoding the most likely state sequence: the Viterbi algorithm

© Estimating the most likely parameters: the EM
(Forward-Backward) algorithm

@ Solutions to these problems are tractable due to the two key
HMM assumptions
@ Conditional independence of observations given the current
state
@ Markov assumption on the states

ASR Lectures 4&5 76



References: HMMs

e Gales and Young (2007). “The Application of Hidden Markov
Models in Speech Recognition”, Foundations and Trends in
Signal Processing, 1 (3), 195-304: section 2.2.

e Jurafsky and Martin (2008). Speech and Language Processing
(2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at
http://www.cs.colorado.edu/~martin/SLP/Errata/
SLP2-PIEV-Errata.html)

o Rabiner and Juang (1989). “An introduction to hidden
Markov models”, IEEE ASSP Magazine, 3 (1), 4-16.

@ Renals and Hain (2010). “Speech Recognition”,

Computational Linguistics and Natural Language Processing
Handbook, Clark, Fox and Lappin (eds.), Blackwells.

ASR Lectures 4&5 7


http://www.cs.colorado.edu/~martin/SLP/Errata/SLP2-PIEV-Errata.html
http://www.cs.colorado.edu/~martin/SLP/Errata/SLP2-PIEV-Errata.html

	Mixture model
	EM algorithm for GMM
	HMMs
	Forward algorithm
	Viterbi algorithm
	Forward-Backward algorithm
	EM algorithm for HMM

