# Hidden Markov Models and Gaussian Mixture Models

Hiroshi Shimodaira and Steve Renals

Automatic Speech Recognition— ASR Lectures 4&5 21&25 January 2016

#### Overview

#### HMMs and GMMs

- Key models and algorithms for HMM acoustic models
- Gaussians
- GMMs: Gaussian mixture models
- HMMs: Hidden Markov models
- HMM algorithms
  - Likelihood computation (forward algorithm)
  - Most probable state sequence (Viterbi algorithm)
  - Estimting the parameters (EM algorithm)

## Fundamental Equation of Statistical Speech Recognition

If  ${\bf X}$  is the sequence of acoustic feature vectors (observations) and  ${\bf W}$  denotes a word sequence, the most likely word sequence  ${\bf W}^*$  is given by

$$\mathbf{W}^* = \arg\max_{\mathbf{W}} P(\mathbf{W} \,|\, \mathbf{X})$$

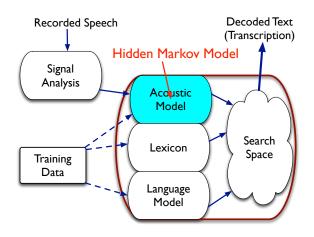
Applying Bayes' Theorem:

$$P(\mathbf{W}|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{W}) P(\mathbf{W})}{p(\mathbf{X})}$$

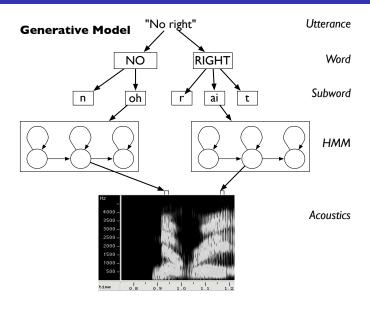
$$\propto p(\mathbf{X}|\mathbf{W}) P(\mathbf{W})$$

$$\mathbf{W}^* = \arg \max_{\mathbf{W}} \underbrace{p(\mathbf{X}|\mathbf{W})}_{\text{Acoustic Language}} \underbrace{P(\mathbf{W})}_{\text{model model}}$$

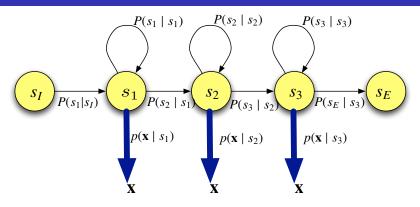
## Acoustic Modelling



## Hierarchical modelling of speech



## Acoustic Model: Continuous Density HMM



Probabilistic finite state automaton

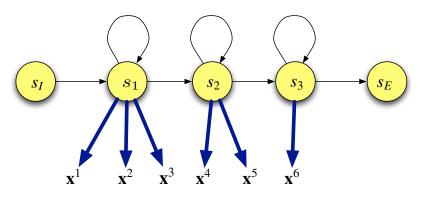
#### Paramaters $\lambda$ :

- Transition probabilities:  $a_{kj} = P(S=j | S=k)$
- Output probability density function:  $b_j(\mathbf{x}) = p(\mathbf{x} | S = j)$

NB: Some textbooks use Q or q to denote the state variable S.  $\mathbf{x}$  corresponds to  $\mathbf{o}_t$  in Lecture slides 02.

ASR Lectures 4&5

## Acoustic Model: Continuous Density HMM



Probabilistic finite state automaton

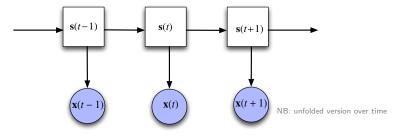
#### Paramaters $\lambda$ :

- Transition probabilities:  $a_{kj} = P(S=j | S=k)$
- Output probability density function:  $b_j(\mathbf{x}) = p(\mathbf{x} | S = j)$

NB: Some textbooks use Q or q to denote the state variable S. x corresponds to  $o_t$  in Lecture slides 02.

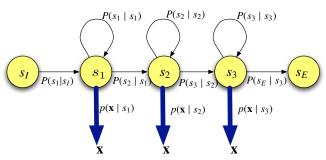
ASR Lectures 4&5

## **HMM Assumptions**



- **1** Markov process: The probability of a state depends only on the previous state:  $P(S(t)|S(t-1),S(t-2),\ldots,S(1))=P(S(t)|S(t-1))$  A state is conditionally independent of all other states given the previous state
- ② **Observation independence**: The output observation  $\mathbf{x}(t)$  depends only on the state that produced the observation:  $p(\mathbf{x}(t)|S(t),S(t-1),\ldots,S(1),\mathbf{x}(t-1),\ldots,\mathbf{x}(1))=p(\mathbf{x}(t)|S(t))$  An acoustic observation  $\mathbf{x}$  is conditionally independent of all other observations given the state that generated it

## Output distribution



ullet Single multivariate Gaussian with mean  $\mu_j$ , covariance matrix  $\Sigma_j$ :

$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

• *M*-component Gaussian mixture model:

$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

Neural network:

$$b_j(\mathbf{x}) \sim P(S \!=\! j \!\mid\! \mathbf{x}) \, / \, P(S \!=\! j)$$
 NB: NN outputs posterior probabiliies

## Background: cdf

#### Consider a real valued random variable X

• Cumulative distribution function (cdf) F(x) for X:

$$F(x) = P(X \le x)$$

 To obtain the probability of falling in an interval we can do the following:

$$P(a < X \le b) = P(X \le b) - P(X \le a)$$
$$= F(b) - F(a)$$

## Background: pdf

• The rate of change of the cdf gives us the *probability density* function (pdf), p(x):

$$p(x) = \frac{d}{dx}F(x) = F'(x)$$
$$F(x) = \int_{-\infty}^{x} p(x)dx$$

- p(x) is **not** the probability that X has value x. But the pdf is proportional to the probability that X lies in a small interval centred on x.
- Notation: p for pdf, P for probability

## The Gaussian distribution (univariate)

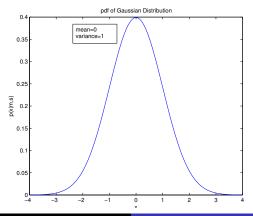
- The Gaussian (or Normal) distribution is the most common (and easily analysed) continuous distribution
- It is also a reasonable model in many situations (the famous "bell curve")
- If a (scalar) variable has a Gaussian distribution, then it has a probability density function with this form:

$$p(x | \mu, \sigma^2) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

- The Gaussian is described by two parameters:
  - the mean  $\mu$  (location)
  - the variance  $\sigma^2$  (dispersion)

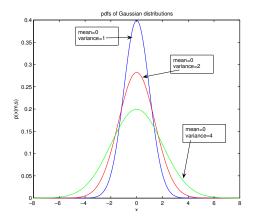
#### Plot of Gaussian distribution

- Gaussians have the same shape, with the location controlled by the mean, and the spread controlled by the variance
- One-dimensional Gaussian with zero mean and unit variance  $(\mu=0,\,\sigma^2=1)$ :



## Properties of the Gaussian distribution

$$\mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$



## Parameter estimation

- Estimate mean and variance parameters of a Gaussian from data x<sub>1</sub>, x<sub>2</sub>,...,x<sub>T</sub>
- Use the following as the estimates:

$$\hat{\mu}=rac{1}{T}\sum_{t=1}^T x_t$$
 (mean)  $\hat{\sigma}^2=rac{1}{T}\sum_{t=1}^T (x_t-\hat{\mu})^2$  (variance)

## Exercise — maximum likelihood estimation (MLE)

Consider the log likelihood of a set of T training data points  $\{x_1, \ldots, x_T\}$  being generated by a Gaussian with mean  $\mu$  and variance  $\sigma^2$ :

$$L = \ln p(\{x_1, \dots, x_T\} | \mu, \sigma^2) = -\frac{1}{2} \sum_{t=1}^{T} \left( \frac{(x_t - \mu)^2}{\sigma^2} - \ln \sigma^2 - \ln(2\pi) \right)$$
$$= -\frac{1}{2\sigma^2} \sum_{t=1}^{T} (x_t - \mu)^2 - \frac{T}{2} \ln \sigma^2 - \frac{T}{2} \ln(2\pi)$$

By maximising the the log likelihood function with respect to  $\mu$  show that the maximum likelihood estimate for the mean is indeed the sample mean:

$$\mu_{ML} = \frac{1}{T} \sum_{t=1}^{T} x_t.$$

#### The multivariate Gaussian distribution

• The *D*-dimensional vector  $\mathbf{x} = (x_1, \dots, x_D)^T$  follows a multivariate Gaussian (or normal) distribution if it has a probability density function of the following form:

$$p(\mathbf{x} \,|\, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

The pdf is parameterized by the mean vector  $\boldsymbol{\mu} = (\mu_1, \dots, \mu_D)^T$  and the covariance matrix  $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1D} \\ \vdots & \ddots & \vdots \\ \sigma_{D1} & \dots & \sigma_{DD} \end{pmatrix}$ .

- The 1-dimensional Gaussian is a special case of this pdf
- The argument to the exponential  $0.5(\mathbf{x} \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} \boldsymbol{\mu})$  is referred to as a *quadratic form*.

#### Covariance matrix

• The mean vector  $\mu$  is the expectation of  $\mathbf{x}$ :

$$\mu = E[x]$$

 The covariance matrix Σ is the expectation of the deviation of x from the mean:

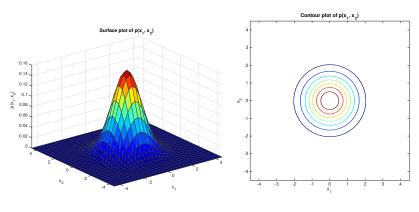
$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

•  $\Sigma$  is a  $D \times D$  symmetric matrix:

$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)] = E[(x_j - \mu_j)(x_i - \mu_i)] = \sigma_{ji}$$

- The sign of the covariance helps to determine the relationship between two components:
  - If  $x_j$  is large when  $x_i$  is large, then  $(x_i \mu_i)(x_j \mu_j)$  will tend to be positive;
  - If  $x_j$  is small when  $x_i$  is large, then  $(x_i \mu_i)(x_j \mu_j)$  will tend to be negative.

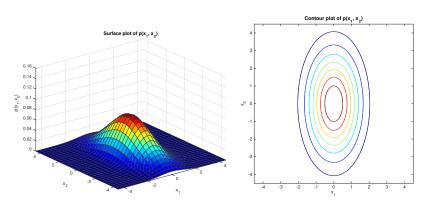
## Spherical Gaussian



$$oldsymbol{\mu} = \left( egin{array}{c} 0 \ 0 \end{array} 
ight) \qquad oldsymbol{\Sigma} = \left( egin{array}{c} 1 & 0 \ 0 & 1 \end{array} 
ight) \qquad 
ho_{12} = 0$$

NB: Correlation coefficient  $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$   $(-1 \le \rho_{ij} \le 1)$ 

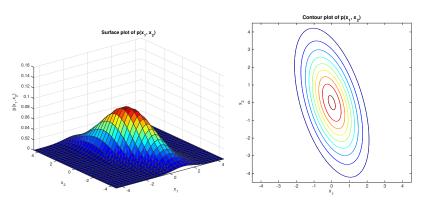
## Diagonal Covariance Gaussian



$$oldsymbol{\mu} = \left( egin{array}{c} 0 \ 0 \end{array} 
ight) \qquad oldsymbol{\Sigma} = \left( egin{array}{c} 1 & 0 \ 0 & 4 \end{array} 
ight) \qquad 
ho_{12} = 0$$

NB: Correlation coefficient  $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$   $(-1 \le \rho_{ij} \le 1)$ 

### Full covariance Gaussian



$$\mu = \left( egin{array}{c} 0 \ 0 \end{array} 
ight) \qquad oldsymbol{\Sigma} = \left( egin{array}{cc} 1 & -1 \ -1 & 4 \end{array} 
ight) \qquad 
ho_{12} = -0.5$$

NB: Correlation coefficient  $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$   $(-1 \le \rho_{ij} \le 1)$ 

# Parameter estimation of a multivariate Gaussian distribution

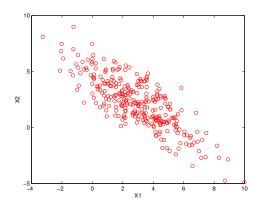
• It is possible to show that the mean vector  $\hat{\mu}$  and covariance matrix  $\hat{\Sigma}$  that maximize the likelihood of the training data are given by:

$$egin{aligned} \hat{oldsymbol{\mu}} &= rac{1}{T} \sum_{t=1}^{T} oldsymbol{x}_t \ \hat{oldsymbol{\Sigma}} &= rac{1}{T} \sum_{t=1}^{T} (oldsymbol{x}_t - \hat{oldsymbol{\mu}}) (oldsymbol{x}_t - \hat{oldsymbol{\mu}})^T \end{aligned}$$

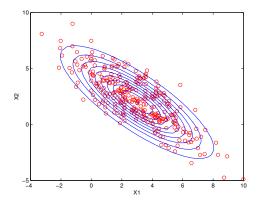
where 
$$\mathbf{x}_{t} = (x_{t1}, \dots, x_{tD})^{T}$$
.

NB: T denotes either the number of samples or vector transpose depending on context.

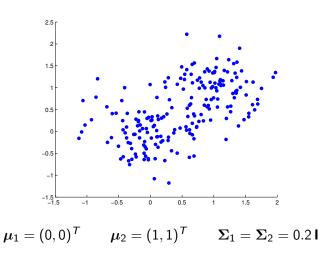
## Example data



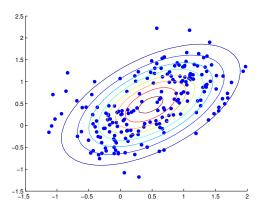
## Maximum likelihood fit to a Gaussian



# Data in clusters (example 1)



## Example 1 fit by a Gaussian

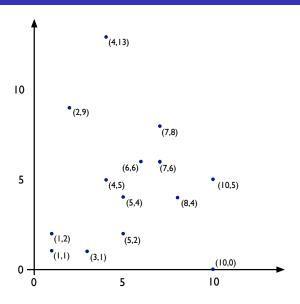


$$oldsymbol{\mu}_1 = (0,0)^{\mathcal{T}} \qquad oldsymbol{\mu}_2 = (1,1)^{\mathcal{T}} \qquad oldsymbol{\Sigma}_1 = oldsymbol{\Sigma}_2 = 0.2 \, \mathbf{I}$$

## k-means clustering

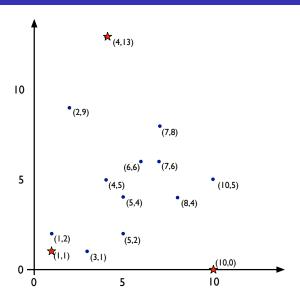
- k-means is an automatic procedure for clustering unlabelled data
- Requires a prespecified number of clusters
- Clustering algorithm chooses a set of clusters with the minimum within-cluster variance
- Guaranteed to converge (eventually)
- Clustering solution is dependent on the initialisation

## k-means example: data set

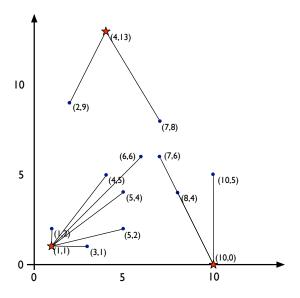


27

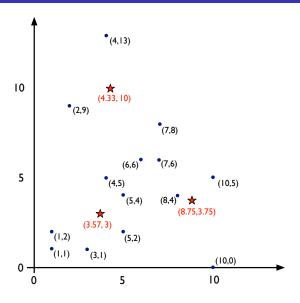
## k-means example: initialization



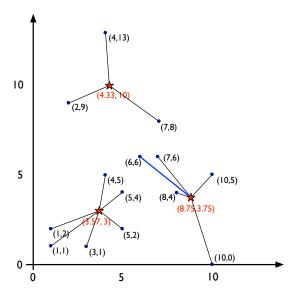
# k-means example: iteration 1 (assign points to clusters)



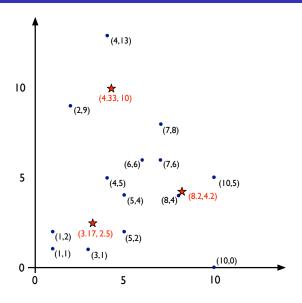
## k-means example: iteration 1 (recompute centres)



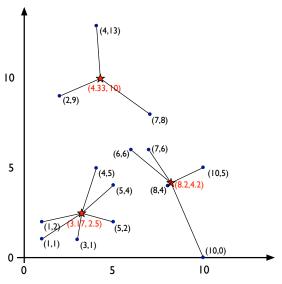
# k-means example: iteration 2 (assign points to clusters)



## k-means example: iteration 2 (recompute centres)



## k-means example: iteration 3 (assign points to clusters)



No changes, so converged

### Mixture model

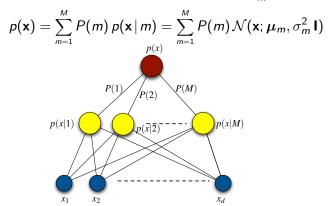
 A more flexible form of density estimation is made up of a linear combination of component densities:

$$p(\mathbf{x}) = \sum_{m=1}^{M} p(\mathbf{x} \mid m) P(m)$$

- This is called a *mixture model* or a *mixture density*
- p(x | m): component densities
- P(m) : mixing parameters
- Generative model:
  - **1** Choose a mixture component based on P(m)
  - ② Generate a data point x from the chosen component using p(x|m)

#### Gaussian mixture model

- The most important mixture model is the Gaussian Mixture Model (GMM), where the component densities are Gaussians
- Consider a GMM, where each component Gaussian  $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$  has mean  $\boldsymbol{\mu}_m$  and a spherical covariance  $\boldsymbol{\Sigma}_m = \sigma_m^2 \mathbf{I}$



## Component occupation probability

• We can apply Bayes' theorem:

$$P(m|\mathbf{x}) = \frac{p(\mathbf{x} | m) P(m)}{p(\mathbf{x})} = \frac{p(\mathbf{x} | m) P(m)}{\sum_{m'=1}^{M} p(\mathbf{x} | m') P(m')}$$

- The posterior probabilities  $P(m|\mathbf{x})$  give the probability that component m was responsible for generating data point  $\mathbf{x}$
- The P(m|x)s are called the component occupation probabilities (or sometimes called the responsibilities)
- Since they are posterior probabilities:

$$\sum_{m=1}^{M} P(m | \mathbf{x}) = 1$$

#### Parameter estimation

- If we knew which mixture component was responsible for a data point:
  - we would be able to assign each point unambiguously to a mixture component
  - and we could estimate the mean for each component Gaussian as the sample mean (just like k-means clustering)
  - and we could estimate the covariance as the sample covariance
- But we don't know which mixture component a data point comes from...
- Maybe we could use the component occupation probabilities  $P(m|\mathbf{x})$  ?

# GMM Parameter estimation when we know which component generated the data

- Define the indicator variable  $z_{mt} = 1$  if component m generated data point  $x_t$  (and 0 otherwise)
- If z<sub>mt</sub> wasn't hidden then we could count the number of observed data points generated by m:

$$N_m = \sum_{t=1}^T z_{mt}$$

And estimate the mean, variance and mixing parameters as:

$$\hat{\mu}_m = \frac{\sum_t z_{mt} x_t}{N_m}$$

$$\hat{\sigma}_m^2 = \frac{\sum_t z_{mt} || x_t - \hat{\mu}_m ||^2}{N_m}$$

$$\hat{P}(m) = \frac{1}{T} \sum_t z_{mt} = \frac{N_m}{T}$$

## Soft assignment

• Estimate "soft counts" based on the component occupation probabilities  $P(m|x_t)$ :

$$N_m^* = \sum_{t=1}^T P(m | \boldsymbol{x}_t)$$

- We can imagine assigning data points to component m weighted by the component occupation probability  $P(m|\mathbf{x}_t)$
- So we could imagine estimating the mean, variance and prior probabilities as:

$$\begin{split} \hat{\mu}_{m} &= \frac{\sum_{t} P(m|\mathbf{x}_{t}) \mathbf{x}_{t}}{\sum_{t} P(m|\mathbf{x}_{t})} = \frac{\sum_{t} P(m|\mathbf{x}_{t}) \mathbf{x}_{t}}{N_{m}^{*}} \\ \hat{\sigma}_{m}^{2} &= \frac{\sum_{t} P(m|\mathbf{x}_{t}) \|\mathbf{x}_{t} - \hat{\mu}_{m}\|^{2}}{\sum_{t} P(m|\mathbf{x}_{t})} = \frac{\sum_{t} P(m|\mathbf{x}_{t}) \|\mathbf{x}_{t} - \hat{\mu}_{m}\|^{2}}{N_{m}^{*}} \\ \hat{P}(m) &= \frac{1}{T} \sum_{t} P(m|\mathbf{x}_{t}) = \frac{N_{m}^{*}}{T} \end{split}$$

## EM algorithm

• Problem! Recall that:

$$P(m|\mathbf{x}) = \frac{p(\mathbf{x} | m)P(m)}{p(\mathbf{x})} = \frac{p(\mathbf{x} | m)P(m)}{\sum_{m'=1}^{M} p(\mathbf{x} | m')P(m')}$$

We need to know  $p(\mathbf{x} \mid m)$  and P(m) to estimate the parameters of  $P(m|\mathbf{x})$ , and to estimate P(m)....

- Solution: an iterative algorithm where each iteration has two parts:
  - Compute the component occupation probabilities  $P(m|\mathbf{x})$ using the current estimates of the GMM parameters (means, variances, mixing parameters) (E-step)
  - Computer the GMM parameters using the current estimates of the component occupation probabilities (M-step)
- Starting from some initialization (e.g. using k-means for the means) these steps are alternated until convergence
- This is called the EM Algorithm and can be shown to maximize the likelihood

Hidden Markov Models and Gaussian Mixture Models

40

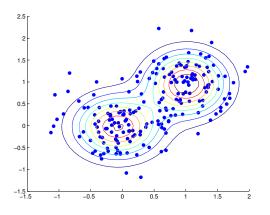
## Maximum likelihood parameter estimation

• The likelihood of a data set  $\mathbf{X} = \{x_1, x_2, \dots, x_T\}$  is given by:

$$\mathcal{L} = \prod_{t=1}^{T} p(\boldsymbol{x}_t) = \prod_{t=1}^{T} \sum_{m=1}^{M} p(\boldsymbol{x}_t | m) P(m)$$

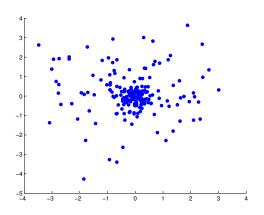
- We can regard the *negative log likelihood* as an error function:
- Considering the derivatives of E with respect to the parameters, gives expressions like the previous slide

# Example 1 fit using a GMM



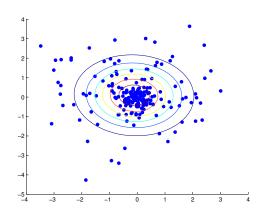
Fitted with a two component GMM using EM

# Peakily distributed data (Example 2)



$$oldsymbol{\mu}_1 = oldsymbol{\mu}_2 = [0 \quad 0]^T \qquad oldsymbol{\Sigma}_1 = 0.1 oldsymbol{\mathsf{I}} \qquad oldsymbol{\Sigma}_2 = 2 oldsymbol{\mathsf{I}}$$

# Example 2 fit by a Gaussian

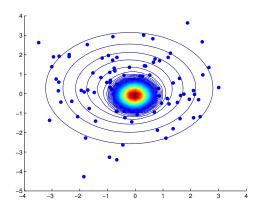


$$\mu_1 = \mu_2 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$
  $\mathbf{\Sigma}_1 = 0.1 \mathbf{I}$   $\mathbf{\Sigma}_2 = 2 \mathbf{I}$ 

$$\pmb{\Sigma}_1 = 0.1 \textbf{I}$$

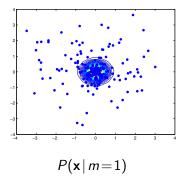
$$\Sigma_2 = 2$$

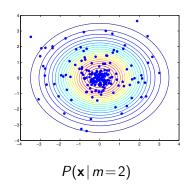
## Example 2 fit by a GMM



Fitted with a two component GMM using EM

# Example 2: component Gaussians

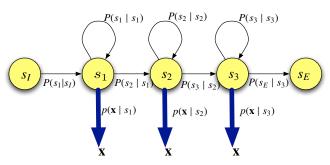




## Comments on GMMs

- GMMs trained using the EM algorithm are able to self organize to fit a data set
- Individual components take responsibility for parts of the data set (probabilistically)
- Soft assignment to components not hard assignment "soft clustering"
- GMMs scale very well, e.g.: large speech recognition systems can have 30,000 GMMs, each with 32 components: sometimes 1 million Gaussian components!! And the parameters all estimated from (a lot of) data by EM

## Back to HMMs...



#### Output distribution:

ullet Single multivariate Gaussian with mean  $\mu_j$ , covariance matrix  $oldsymbol{\Sigma}_j$ :

$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

• M-component Gaussian mixture model:

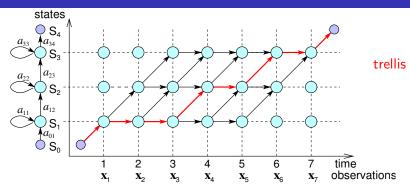
$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

## The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **1 Likelihood** Determine the overall likelihood of an observation sequence  $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T)$  being generated by an HMM.
- Oecoding Given an observation sequence and an HMM, determine the most probable hidden state sequence
- **Training** Given an observation sequence and an HMM, learn the best HMM parameters  $\lambda = \{\{a_{jk}\}, \{b_j()\}\}$

## 1. Likelihood: how to calculate?



$$\begin{split} P(\mathbf{X}, \text{path}_{\ell} | \lambda) &= P(\mathbf{X} | \text{path}_{\ell}, \lambda) P(\text{path}_{\ell} | \lambda) \\ &= P(\mathbf{X} | s_0 s_1 s_1 s_2 s_2 s_3 s_3 s_4, \lambda) P(s_0 s_1 s_1 s_2 s_2 s_3 s_3 s_4 | \lambda) \\ &= b_1(\mathbf{x}_1) b_1(\mathbf{x}_2) b_1(\mathbf{x}_3) b_2(\mathbf{x}_4) b_2(\mathbf{x}_5) b_3(\mathbf{x}_6) b_3(\mathbf{x}_7) a_{01} a_{11} a_{12} a_{22} a_{23} a_{33} a_{34} \end{split}$$

$$P(\mathbf{X} | \boldsymbol{\lambda}) = \sum_{\{\text{path}_{\ell}\}} P(\mathbf{X}, \text{path}_{\ell} | \boldsymbol{\lambda}) \simeq \max_{\text{path}_{\ell}} P(\mathbf{X}, \text{path}_{\ell} | \boldsymbol{\lambda})$$
forward(backward) algorithm

Viterbi algorithm

ASR Lectures 4&5 Hidden Markov Models and Gaussian Mixture Models

50

## 1. Likelihood: The Forward algorithm

- Goal: determine  $p(\mathbf{X} | \lambda)$
- Sum over all possible state sequences  $s_1 s_2 \dots s_T$  that could result in the observation sequence X
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Hown many paths calculations in  $p(X | \lambda)$ ?

$$\sim \underbrace{N \times N \times \cdots N}_{\text{$T$ times}} = N^{\text{$T$}} \qquad N: \text{ number of HMM states}$$

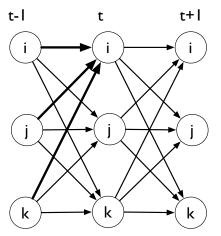
$$T: \text{ length of observation}$$

e.g. 
$$N^T \approx 10^{10}$$
 for  $N = 3$ ,  $T = 20$ 

- Computation complexity of multiplication:  $O(2TN^T)$
- The Forward algorithm reduces this to  $O(TN^2)$

## Recursive algorithms on HMMs

Visualize the problem as a state-time trellis



## 1. Likelihood: The Forward algorithm

- Goal: determine  $p(\mathbf{X} | \lambda)$
- Sum over all possible state sequences  $s_1s_2...s_T$  that could result in the observation sequence  $\boldsymbol{X}$
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Forward probability,  $\alpha_t(j)$ : the probability of observing the observation sequence  $\mathbf{x}_1 \dots \mathbf{x}_t$  and being in state j at time t:

$$\alpha_t(j) = p(\mathbf{x}_1, \dots, \mathbf{x}_t, S(t) = j | \lambda)$$

## 1. Likelihood: The Forward recursion

Initialization

$$\alpha_0(s_I) = 1$$
 $\alpha_0(j) = 0 \quad \text{if } j \neq s_I$ 

Recursion

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\mathbf{x}_t) \qquad 1 \leq j \leq N, \ 1 \leq t \leq T$$

Termination

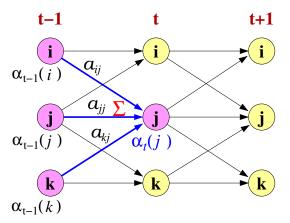
$$p(\mathbf{X} | \lambda) = \alpha_T(s_E) = \sum_{i=1}^{N} \alpha_T(i) a_{iE}$$

 $s_I$ : initial state,  $s_F$ : final state

54

#### 1. Likelihood: Forward Recursion

$$\alpha_t(j) = p(\mathbf{x}_1, \dots, \mathbf{x}_t, S(t) = j | \lambda) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$



## Viterbi approximation

- Instead of summing over all possible state sequences, just consider the most likely
- Achieve this by changing the summation to a maximisation in the recursion:

$$V_t(j) = \max_i V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$

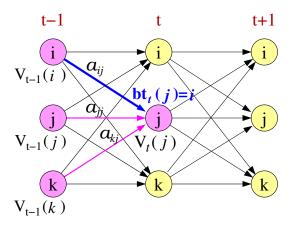
- Changing the recursion in this way gives the likelihood of the most probable path
- We need to keep track of the states that make up this path by keeping a sequence of backpointers to enable a Viterbi backtrace: the backpointer for each state at each time indicates the previous state on the most probable path

#### Viterbi Recursion

$$V_{t}(j) = \max_{i} V_{t-1}(i) a_{ij} b_{j}(\mathbf{x}_{t})$$
 Likelihood of the most probable path t-1 t t+1 
$$\mathbf{v}_{t-1}(i) \mathbf{v}_{t-1}(j) \mathbf{v}_{t}(j) \mathbf{v}_{t}(j)$$
 
$$\mathbf{v}_{t-1}(k)$$

#### Viterbi Recursion

Backpointers to the previous state on the most probable path



# 2. Decoding: The Viterbi algorithm

Initialization

$$V_0(i) = 1$$
  
 $V_0(j) = 0$  if  $j \neq i$   
 $bt_0(j) = 0$ 

Recursion

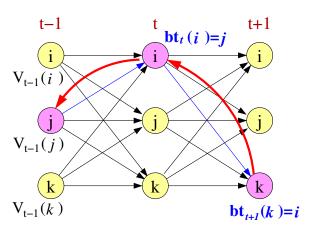
$$V_t(j) = \max_{i=1}^N V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$
  
$$\mathsf{bt}_t(j) = \arg\max_{i=1}^N V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$

Termination

$$P^* = V_T(s_E) = \max_{i=1}^N V_T(i) a_{iE}$$
$$s_T^* = \operatorname{bt}_T(q_E) = \arg \max_{i=1}^N V_T(i) a_{iE}$$

#### Viterbi Backtrace

Backtrace to find the state sequence of the most probable path



## 3. Training: Forward-Backward algorithm

- ullet Goal: Efficiently estimate the parameters of an HMM  $\lambda$  from an observation sequence
- Assume single Gaussian output probability distribution

$$b_j(\mathbf{x}) = 
ho(\mathbf{x} | j) = \mathcal{N}(\mathbf{x}; oldsymbol{\mu}_j, oldsymbol{\Sigma}_j)$$

- Parameters  $\lambda$ :
  - Transition probabilities  $a_{ij}$ :

$$\sum_{j} a_{ij} = 1$$

• Gaussian parameters for state j: mean vector  $\mu_j$ ; covariance matrix  $\Sigma_j$ 

61

## Viterbi Training

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding
- Maximum likelihood estimate of  $a_{ij}$ , if  $C(i \rightarrow j)$  is the count of transitions from i to j

$$\hat{a}_{ij} = \frac{C(i \to j)}{\sum_{k} C(i \to k)}$$

 Likewise if Z<sub>j</sub> is the set of observed acoustic feature vectors assigned to state j, we can use the standard maximum likelihood estimates for the mean and the covariance:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{\sum_{\boldsymbol{x} \in Z_{j}} \boldsymbol{x}}{|Z_{j}|}$$

$$\hat{\boldsymbol{\Sigma}}_{j} = \frac{\sum_{\boldsymbol{x} \in Z_{j}} (\boldsymbol{x} - \hat{\boldsymbol{\mu}}_{j}) (\boldsymbol{x} - \hat{\boldsymbol{\mu}}_{j})^{T}}{|Z_{i}|}$$

## EM Algorithm

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability  $\gamma_t(j)$  of occupying state j at time t given the sequence of observations.
  - Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')
- Each iteration has two steps:
  - E-step estimate the state occupation probabilities (Expectation)
  - M-step re-estimate the HMM parameters based on the estimated state occupation probabilities (Maximisation)

## Backward probabilities

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_t(j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T | S(t) = j, \lambda)$$

The probability of future observations given a the HMM is in state j at time t

- These can be recursively computed (going backwards in time)
  - Initialisation

$$\beta_T(i) = a_{iE}$$

Recursion

$$eta_t(i) = \sum_{j=1}^N \mathsf{a}_{ij} b_j(\mathsf{x}_{t+1}) eta_{t+1}(j) \quad ext{for } t = T-1, \dots, 1$$

Termination

$$p(\mathbf{X}|\boldsymbol{\lambda}) = \beta_0(\boldsymbol{I}) = \sum_{i=1}^{N} a_{ij}b_j(\mathbf{x}_1)\beta_1(j) = \alpha_T(s_E)$$

#### **Backward Recursion**

$$\beta_{t}(j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_{T} | S(t) = j, \lambda) = \sum_{j=1}^{N} a_{ij} b_{j}(\mathbf{x}_{t+1}) \beta_{t+1}(j)$$

$$\mathbf{t-1} \qquad \mathbf{t} \qquad \mathbf{t+1}$$

$$\mathbf{i} \qquad \qquad \mathbf{j} \qquad$$

## State Occupation Probability

- The state occupation probability  $\gamma_t(j)$  is the probability of occupying state j at time t given the sequence of observations
- Express in terms of the forward and backward probabilities:

$$\gamma_t(j) = S(t) = j | \mathbf{X}, \lambda) = \frac{1}{\alpha_T(s_E)} \alpha_t(j) \beta_t(j)$$

recalling that  $p(\mathbf{X}|\boldsymbol{\lambda}) = \alpha_T(s_E)$ 

Since

$$\alpha_{t}(j)\beta_{t}(j) = p(\mathbf{x}_{1},...,\mathbf{x}_{t},S(t)=j|\lambda)$$

$$p(\mathbf{x}_{t+1},...,\mathbf{x}_{T}|S(t)=j,\lambda)$$

$$= p(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},...,\mathbf{x}_{T},S(t)=j|\lambda)$$

$$= p(\mathbf{X},S(t)=j|\lambda)$$

$$P(S(t)=j|\mathbf{X},\lambda) = \frac{p(\mathbf{X},S(t)=j|\lambda)}{p(\mathbf{X}|\lambda)}$$

## Re-estimation of Gaussian parameters

- The sum of state occupation probabilities through time for a state, may be regarded as a "soft" count
- We can use this "soft" alignment to re-estimate the HMM parameters:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(j) \boldsymbol{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

$$\hat{\boldsymbol{\Sigma}}_{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(j) (\boldsymbol{x}_{t} - \hat{\boldsymbol{\mu}}_{j}) (\boldsymbol{x} - \hat{\boldsymbol{\mu}}_{j})^{T}}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

## Re-estimation of transition probabilities

• Similarly to the state occupation probability, we can estimate  $\xi_t(i,j)$ , the probability of being in i at time t and j at t+1, given the observations:

$$\xi_{t}(i,j) = P(S(t)=i, S(t+1)=j | \mathbf{X}, \lambda)$$

$$= \frac{p(S(t)=i, S(t+1)=j, \mathbf{X} | \lambda)}{p(\mathbf{X} | \lambda)}$$

$$= \frac{\alpha_{t}(i)a_{ij}b_{j}(\mathbf{x}_{t+1})\beta_{t+1}(j)}{\alpha_{T}(s_{E})}$$

We can use this to re-estimate the transition probabilities

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T} \xi_t(i, j)}{\sum_{k=1}^{N} \sum_{t=1}^{T} \xi_t(i, k)}$$

## Pulling it all together

- Iterative estimation of HMM parameters using the EM algorithm. At each iteration
  - E step For all time-state pairs
    - **1** Recursively compute the forward probabilities  $\alpha_t(j)$  and backward probabilities  $\beta_t(j)$
    - ② Compute the state occupation probabilities  $\gamma_t(j)$  and  $\xi_t(i,j)$

- M step Based on the estimated state occupation probabilities re-estimate the HMM parameters: mean vectors  $\mu_j$ , covariance matrices  $\Sigma_j$  and transition probabilities  $a_{ij}$
- The application of the EM algorithm to HMM training is sometimes called the Forward-Backward algorithm

## Extension to a corpus of utterances

- We usually train from a large corpus of R utterances
- If  $\mathbf{x}_t^r$  is the tth frame of the rth utterance  $\mathbf{X}^r$  then we can compute the probabilities  $\alpha_t^r(j)$ ,  $\beta_t^r(j)$ ,  $\gamma_t^r(j)$  and  $\xi_t^r(i,j)$  as before
- The re-estimates are as before, except we must sum over the R utterances, eg:

$$\hat{\mu}_{j} = \frac{\sum_{r=1}^{R} \sum_{t=1}^{T} \gamma_{t}^{r}(j) \mathbf{x}_{t}^{r}}{\sum_{r=1}^{R} \sum_{t=1}^{T} \gamma_{t}^{r}(j)}$$

## Extension to Gaussian mixture model (GMM)

- The assumption of a Gaussian distribution at each state is very strong; in practice the acoustic feature vectors associated with a state may be strongly non-Gaussian
- In this case an *M*-component Gaussian mixture model is an appropriate density function:

$$b_j(\mathbf{x}) = p(\mathbf{x} | S = j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

Given enough components, this family of functions can model any distribution.

 Train using the EM algorithm, in which the component estimation probabilities are estimated in the E-step

## EM training of HMM/GMM

• Rather than estimating the state-time alignment, we estimate the component/state-time alignment, and component-state occupation probabilities  $\gamma_t(j,m)$ : the probability of occupying mixture component m of state j at time t.

( $\xi_{tm}(j)$  in Jurafsky and Martin's SLP)

• We can thus re-estimate the mean of mixture component m of state j as follows

$$\hat{\boldsymbol{\mu}}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(j, m) \boldsymbol{x}_t}{\sum_{t=1}^{T} \gamma_t(j, m)}$$

And likewise for the covariance matrices (mixture models often use diagonal covariance matrices)

• The mixture coefficients are re-estimated in a similar way to transition probabilities:

$$\hat{c}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(j, m)}{\sum_{m'=1}^{M} \sum_{t=1}^{T} \gamma_t(j, m')}$$

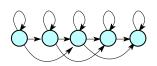
## Doing the computation

- The forward, backward and Viterbi recursions result in a long sequence of probabilities being multiplied
- This can cause floating point underflow problems
- In practice computations are performed in the log domain (in which multiplies become adds)
- Working in the log domain also avoids needing to perform the exponentiation when computing Gaussians

## A note on HMM topology



left-to-right model



parallel path left-to-right model



ergodic model

$$\left(\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right)$$

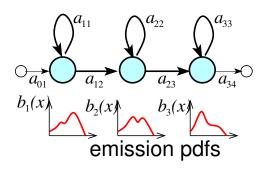
$$\begin{pmatrix} a_{11} & a_{12} & 0 \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \qquad \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 & 0 \\ 0 & a_{22} & a_{23} & a_{24} & 0 \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55} \end{pmatrix} \qquad \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{pmatrix}$$

Speech recognition: left-to-right HMM with 3  $\sim$  5 states

Speaker recognition: ergodic HMM

74

## A note on HMM emission probabilities



|                            | Emission prob.       |              |
|----------------------------|----------------------|--------------|
| Continuous (density) HMM   | continuous density   | GMM, NN/DNN  |
| Discrete (probability) HMM | discrete probability | VQ           |
| Semi-continuous HMM        | continuous density   | tied mixture |
| (tied-mixture HMM)         |                      |              |

## Summary: HMMs

- HMMs provide a generative model for statistical speech recognition
- Three key problems
  - Computing the overall likelihood: the Forward algorithm
  - Oecoding the most likely state sequence: the Viterbi algorithm
  - Stimating the most likely parameters: the EM (Forward-Backward) algorithm
- Solutions to these problems are tractable due to the two key HMM assumptions
  - Conditional independence of observations given the current state
  - Markov assumption on the states

## References: HMMs

- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195–304: section 2.2.
- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at http://www.cs.colorado.edu/~martin/SLP/Errata/ SLP2-PIEV-Errata.html)
- Rabiner and Juang (1989). "An introduction to hidden Markov models", IEEE ASSP Magazine, 3 (1), 4–16.
- Renals and Hain (2010). "Speech Recognition",
   Computational Linguistics and Natural Language Processing Handbook, Clark, Fox and Lappin (eds.), Blackwells.