Hidden Markov Models

and
Gaussian Mixture Models

Hiroshi Shimodaira and Steve Renals

Automatic Speech Recognition— ASR Lectures 4&5
21&25 January 2016

AQR Lectures 4&5

Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is

given by
W* = arg max P(W|X)

Applying Bayes' Theorem:

pw|x) — PXIW) P(W)
p(X)
x p(X|W) P(W)
W* = argmax p(X|W) P(W)
W S~ — ~—
Acoustic Language
model model
ASR Lectures 4&5 3
Hierarchical modelling of speech
Generative Model "No ri ht" Utterance
IGHT Word
Subword

&&8

Acoustics

&&8

ASR Lectures 4&5 5

HMMs and GMMs

o Key models and algorithms for HMM acoustic models
Gaussians

GMMs: Gaussian mixture models

HMMs: Hidden Markov models

HMM algorithms

o Likelihood computation (forward algorithm)
o Most probable state sequence (Viterbi algorithm)
o Estimting the parameters (EM algorithm)

. ASRlectures4&5 | Hidden Markov Models and Gaussian Mixture Models 2 |

Acoustic Modelling

Decoded Text
(Transcrlptlon)

Hidden Markov Model

Recorded Speech

Signal
Analysis

Search
== Lexicon S
Training pace
Data
=~ Language
Model
ASR Lectures 4&5 4

Acoustic Model: Continuous Density HMM

X

Probabilistic finite state automaton
Paramaters A:
o Transition probabilities: ay; = P(S=j|S=k)
@ Output probability density function: bj(x) = p(x|S=})

NB: Some textbooks use Q or g to denote the state variable S.

x corresponds to o¢ in Lecture slides 02.

ASR Lectures 4&5 6

Acoustic Model: Continuous Density HMM HMM Assumptions

s(r=1) s(1) s(t+1)
@ @ NB: unfolded version over time

@ Markov process: The probability of a state depends only on the

Xl X2 X3 X4 XS X6 previous state: P(S(t)|S(t—1),5(t—2),...,5(1)) = P(5(t)|S(t—1))
A state is conditionally independent of all other states given the previous
Probabilistic finite state automaton state
Paramaters A: @ Observation independence: The output observation x(t) depends
o Transition probabilities: ax; = P(S=j|S=k) only on the state that produced the observation:
@ Output probability density function: bj(x) = p(x|S=}) px()|5(1), 5(t-1),..., 5(1).x(t—1).....x(1)) = p(x(1)| 5(1))

An acoustic observation x is conditionally independent of all other

NB: Some textbooks use @ or g to denote the state variable S. . X .
observations given the state that generated it

x corresponds to o; in Lecture slides 02.

AQR Lectures 4&5

. ASRlectures4&5 | Hidden Markov Models and Gaussian Mixture Models 7 |

Output distribution Background: cdf

P(s1 | s1) P(s2] 52) P(s3 | s3)
Consider a real valued random variable X
<SI>P(S]|SI) 520NN o T P(SE\S;)CSE> o Cumulative distribution function (cdf) F(x) for X:
pOx| 1) x| 52) p(x|s3) F(x) = P(X < x)
X X X @ To obtain the probability of falling in an interval we can do
o Single multivariate Gaussian with mean p;, covariance matrix X;: the following:
bix) = p(x| S=J) = N{x: j, ;) P(a< X <b)=P(X <b)— P(X < a)
@ M-component Gaussian mixture model = F(b) — F(a)
bj() |S J) chm X Hjm, 2:jm)
o Neural network:
bj(X) ~ P(SZ]\X) / P(Sij) NB: NN outputs posterior probabiliies

ASR‘ Lectures 4&5 ASR Leclme~ 4&5

Background: pdf The Gaussian distribution (univariate)

@ The Gaussian (or Normal) distribution is the most common

@ The rate of change of the cdf gives us the probability density (and easily analysed) continuous distribution

function (pdf), p(x):
@ It is also a reasonable model in many situations (the famous

d “bell curve”
px) = L F(x) = F(x) e o
X o If a (scalar) variable has a Gaussian distribution, then it has a
F(x) = / p(x)dx probability density function with this form:
i 1 (=)
2 . 2
@ p(x) is not the probability that X has value x. But the pdf is p(x|p,0%) = N(x; pp, 0°) = Voro? exp < 252
proportional to the probability that X lies in a small interval
centred on x. @ The Gaussian is described by two parameters:
o Notation: p for pdf, P for probability o the mean p (location)

o the variance o2 (dispersion)

ASR Lectures 4&5 10 ASR Lectures 4&5 11

Plot of Gaussian distribution Properties of the Gaussian distribution

@ Gaussians have the same shape, with the location controlled
by the mean, and the spread controlled by the variance

@ One-dimensional Gaussian with zero mean and unit variance
(=0, 0%=1):

pdf of Gaussian Distribution

pIms)
s

ASR Lectures 4&5

12

*U*MV)

202

So2 L
N(x;p,0%) = 2exp(
2o
pdfs of Gaussian distributions

mean=0
variance=1

plxim.s)
°
S

ASR Lectures 4&5 13

Parameter estimation Exercise — maximum likelihood estimation (MLE)

Consider the log likelihood of a set of T training data points
{x1,...,x7} being generated by a Gaussian with mean y and
. . . variance o*:
o Estimate mean and variance parameters of a Gaussian from
data xi, X2, ..., XT T 2
1 (xe — 1)
@ Use the following as the estimates: L=Inp({x,....,x7}|p,0%) = 5 Z (T —Ino® —In(27)
t=1
T T
! 1 T T
n= — _ 2 2
B = T;Xt (mean) 7—?2()&_}/5) —Elna —Eln(2ﬂ')
= t—=
1T
52— = Z(Xt — p)? (variance) By maximising the the log likelihood function with respect to p
T =1 show that the maximum likelihood estimate for the mean is indeed
the sample mean:
1T
pmML = T Z Xt.
t=1

@ The D-dimensional vector x = (xg,...,xp)T follows a
multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:

Pl . %) = e (3 T= -)

The pdf is parameterized by the mean vector gt = (u1, ..., up)T
011 ... O1D

and the covariance matrix X =
op1 JpD

@ The 1-dimensional Gaussian is a special case of this pdf

@ The argument to the exponential 0.5(x —)T 1(x — p) is
referred to as a quadratic form.

ASR Lectures 4&5

@ The mean vector p is the expectation of x:

w = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

2= El(x—p)(x—n)7]
@ X isa D x D symmetric matrix:

oy = El0x =)05 —)] = ELCg =)5 =)] = o

@ The sign of the covariance helps to determine the relationship
between two components:
o If x; is large when x; is large, then (x; — p;)(xj — ;) will tend
to be positive;
o If x; is small when x; is large, then (x; — ;) (x; — pj) will tend
to be negative.

ASR Lectures 4&5 17

Spherical Gaussian Diagonal Covariance Gaussian

Contour plot of p(x,, x,) Contour plot of p(x,, x,)

Surtace plot of p(x,. X,) 4 Surtace plot of p(x,, x,) 4

. : /””’Il;"n\\ .

0 10 0 10
w=(o) ==(59%) ee-o w=(5) ==(53%) w0
NB: Correlation coefficient pj; = 75 (-1<pj <) NB: Correlation coefficient pj; = %y (—1<p;<1)
ASR Lectures 4&5 ASR Lectures 4&5 19

Full covariance Gaussian Parameter estimation of a multivariate Gaussian

distribution

Contour plot of p(x,, x,)

Surface plot of px,, X,)

@ It is possible to show that the mean vector fi and covariance
matrix X that maximize the likelihood of the training data are
given by:

= th
Z(Xt H)Xt H)T

where x; = (x¢1,---,xp) 7.

NB: T denotes either the number of samples or vector
transpose depending on context.

ASR Lecture~ 485 21

-5 _

ASR Lectures 4&5 22 ASR Lectures 4&5 23

Data in clusters (example 1) Example 1 fit by a Gaussian

2 : : .
15 . : Cer
B Pk
| oo TR
. . . °* ove o ° o
05 . o o0 o f Qoo of
K . ;‘CV. '.‘.'oo o o
° o . ..:'- ..:; g'.“. ’
DY g °
-05 ';‘g. .’o o
35 =] 05 0 05 1 15 2
p1=(0,007 py=(1,1)7 3 =3,=02I

ASR Lectures 4&5

24

M1 = (07 O)T

k-means clustering k-means example: data set

k-means example: initialization k-means example: iteration 1 (assign points to clusters)

k-means is an automatic procedure for clustering unlabelled

data
Requires a prespecified number of clusters

Clustering algorithm chooses a set of clusters with the
minimum within-cluster variance

Guaranteed to converge (eventually)

Clustering solution is dependent on the initialisation

ASR Lectures 4&5

A
K3
10
‘@9
.
(7.8)

©6 (76

5 . .
“5) (10,5)
4 * @4
°12) °5.2)
0 *flvl) @) _AKIO,O) .
0 5 10

ASR Lectures 4&5

26

1.5 -1 -05 0 05 1 15 2
[1,22(171)7— 2122220.2|
ASR Lectures 4&5
A
°13)
‘@)
.
(7.8)
(6-6). .(7-6)
°45) ® (105)
*64) ‘@4
‘(12 “52)
. .
(L1) @3.1) (100) -
0 5 10

A

ASR Lectures 4&5

4,13)

29)

7.8)

(7.6)

(10,5
8,4)

ASR Lectures 4&5

10,0)

k-means example: iteration 1 (recompute centres)

k-means example: iteration 2 (recompute centres)

4

A

°413)

*
(4.33,10)
e

©6)°
°(45)

°54)
*
. @s7.3)
12 (5.2)

KOOI

.
(7.8)

°(7.6)
° (105)

64" *
(8.75,3.75)

(10,0)

4

A

ASR Lectures 4&5

°413)

*
(4.33,10)
e

©8°
°(45)
°54)
.(|,7.) (3.17,2.5) '(51)
KOOI

10

.
(7.8)

°7.6)
o
(10,5)

@ 4)* (82,4.2)

(10,0)

10

k-means example: iteration 2 (assign points to clusters)

k-means example: iteration 3 (assign points to clusters)

0

A

ASR Lectures 4&5

A

0

No changes, so converged

ASR Lectures 4&5 32 ASR Lectures 4&5 33

Mixture model Gaussian mixture model

@ The most important mixture model is the Gaussian Mixture Model
(GMM), where the component densities are Gaussians

@ A more flexible form of density estimation is made up of a
linear combination of component densities: o Consider a GMM, where each component Gaussian N (x; tm, Xm)

has mean p,, and a spherical covariance ¥, = Ur2nl

M
= m)P(m ud z .
p) = 3 p(x|m)P(m) p(x) = 3 P(m) plx|m) = 3 P(m) N (5 i, 3 1)

p(x)
This is called a mixture model or a mixture density

p(x|m) : component densities

P(m) : mixing parameters

Generative model:

@ Choose a mixture component based on P(m)
@ Generate a data point x from the chosen component using
p(x|m)

ASR Lectures 4&5 34 ASR Lectures 4&5 35

Component occupation probability Parameter estimation

@ We can apply Bayes' theorem:

Plmlx) — P Pm) ___plx|m) P(m)

p(x) S P(x|m')P(m)

@ The posterior probabilities P(m|x) give the probability that
component m was responsible for generating data point x

The P(m|x)s are called the component occupation
probabilities (or sometimes called the responsibilities)

@ Since they are posterior probabilities:

@ I/f we knew which mixture component was responsible for a
data point:
o we would be able to assign each point unambiguously to a
mixture component
e and we could estimate the mean for each component Gaussian
as the sample mean (just like k-means clustering)
e and we could estimate the covariance as the sample covariance

@ But we don't know which mixture component a data point
comes from...

@ Maybe we could use the component occupation probabilities

S P ?
> P(m|x) =1 (m[x)
m=1

GMM Parameter estimation when we know which

component generated the data

@ Define the indicator variable z,,; = 1 if component m
generated data point x; (and 0 otherwise)

@ If z,,; wasn't hidden then we could count the number of
observed data points generated by m:

.
N = szt
t=1
@ And estimate the mean, variance and mixing parameters as:

_ Dot ZmtXt

Soft assignment

o Estimate “soft counts” based on the component occupation
probabilities P(m|x;):

T
No =2 P(m|xt)
t=1

@ We can imagine assigning data points to component m
weighted by the component occupation probability P(m|x:)

@ So we could imagine estimating the mean, variance and prior
probabilities as:

_ > P(m]xe)x: _ > P(m]xe)x:

Am =N, B = S P(mlx) — N
sz _ Lezmllxe—iml s2 _ SoPlx) xe—fiml? _ S P(mIxe) e
m Nim " > P(m|xt) N,
R 1 N, R 1 N
P(m):722mr:? P(m):?ZP(m|xt):?’"

EM algorithm Maximum likelihood parameter estimation

@ Problem! Recall that:
Pl — PEImP(m)
p(x)

p(x|m)P(m)
1 P(x| m)P(nr)
We need to know p(x|m) and P(m) to estimate the
parameters of P(m|x), and to estimate P(m)....
@ Solution: an iterative algorithm where each iteration has two
parts:

o Compute the component occupation probabilities P(m|x)
using the current estimates of the GMM parameters (means,
variances, mixing parameters) (E-step)

o Computer the GMM parameters using the current estimates of
the component occupation probabilities (M-step)

@ Starting from some initialization (e.g. using k-means for the
means) these steps are alternated until convergence

@ This is called the EM Algorithm and can be shown to
maximize the likelihood

ASR Lectures 4&5

o The likelihood of a data set X = {x1,x2,...,x7} is given by:

T T M
L= HP(Xt) = HZp(xt|m) P(m)
t=1 t=1 m=1
o We can regard the negative log likelihood as an error function:

o Considering the derivatives of E with respect to the
parameters, gives expressions like the previous slide

ASR Lectures 4&5 41

Example 1 fit using a GMM Peakily distributed data (Example 2)

[0 o’

ASR‘ Lectures 4&5

=011

S, =21

.
I, . . LI .
2 0o 8 0% '.o'
. °« © .
1 . ". e . 0
. .{'.
0 . e @ o °
oo o80 o
-1 ° ° 00 .
. LI ., o oo
2 o °
. .
.
-3
®e
-4
.

mi=p=[0 07 T;=01 =2

. ASRlectures4&5 | Hidden Markov Models and Gaussian Mixture Models 43 |

Fitted with a two component GMM using EM

ASR Leclme~ 4&5

Example 2: component Gaussians Comments on GMMs

ASR Lectures 4&5

GMMs trained using the EM algorithm are able to self
organize to fit a data set

Individual components take responsibility for parts of the data
set (probabilistically)

Soft assignment to components not hard assignment — “soft
clustering”

GMMs scale very well, e.g.: large speech recognition systems
can have 30,000 GMMs, each with 32 components:
sometimes 1 million Gaussian components!! And the
parameters all estimated from (a lot of) data by EM

ASR Lectures 4&5 47

Back to HMMs...

P(sy | s1) P(s2 | 52) P(s3 | 53)
S R S S
(i)P(mm P53 | SN2 AP(s3 | I LPCsi | s;)(£ >
p(x | 51) P 52) px | 53)
X X X

Output distribution:
@ Single multivariate Gaussian with mean p;, covariance matrix X;:

bi(x) = p(x|S=j) = N(x; pj, j)
@ M-component Gaussian mixture model:

Bi(x) = p(x|S=J) = 3" i N (% jms)

m=1
ASR Lectures 4&5 48
1. Likelihood: how to calculate?
states

: : : : : : e
trellis

1 2 3 4 5 6 7 time

X, X, X, X, X Xg X, Observations

P(X,path, |\) = P(X|path,, A)P(path, |\)
= P(X | 505151515252535354, A)P(50515151525253S3S4 | A)
= by (x1) b1 (x2) b1 (x3) ba(x4) b2 (x5) b3 (x6) b3 (x7) a01a11 311 312322323333 334
P(X|X)= > P(X,path,|A)
{path,}
forward(backward) algorithm

~ max P(X, path, |\)
path, ’

Viterbi algorithm

ASR Lectures 4&5 50

Recursive algorithms on HMMs

Visualize the problem as a state-time trellis

t-1 t t+l

ASR Lectures 4&5 52

The three problems of HMMs

Working with HMM s requires the solution of three problems:

@ Likelihood Determine the overall likelihood of an observation
sequence X = (X1,...,Xt,...,XT) being generated by an
HMM.

@ Decoding Given an observation sequence and an HMM,
determine the most probable hidden state sequence

© Training Given an observation sequence and an HMM, learn
the best HMM parameters A = {{aj}, {b;j()}}

1. Likelihood: The Forward algorithm

o Goal: determine p(X|A)

@ Sum over all possible state sequences s;s; ... st that could
result in the observation sequence X

@ Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

@ Hown many paths calculations in p(X|A)?

~ NxNx---N =NT N : number of HMM states
—_— .
T times T : length of observation

eg. NT ~ 10 for N=3, T=20
o Computation complexity of multiplication: O(2T NT)
o The Forward algorithm reduces this to O(TN?)

1. Likelihood: The Forward algorithm

Goal: determine p(X|)

@ Sum over all possible state sequences s;s; ... st that could
result in the observation sequence X

@ Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

® Forward probability, at(j): the probability of observing the
observation sequence xj ...X; and being in state j at time t:

ae(j) = p(X1, ... xe, S(t)=j|A)

ASR Lectures 4&5 53

1. Likelihood: The Forward recursion 1. Likelihood: Forward Recursion

o Initialization N
ag(s)) =1 ar(J) = p(x1, ..., xe, S(t)=j[A) = ; ae—1(i)ajbj(xt)
ao(j)=0 if j#s

t-1

t+1

@ Recursion

N
ar(j) =D ara(i)agbi(xe) 1<j<N,1<t<T O
i=1

@ Termination

N
p(X|A) = ar(se) = Z ar(i)aE

(i)
€)
()

s;: initial state, sg: final state o i(k)
ASR Lectures 4&5 54 ASR Lectures 4&5 55
Viterbi approximation Viterbi Recursion
@ Instead of summing over all possible state sequences, just Ve(i) = m’_ax Vie1(i)ajbj(x:)

consider the most likely

Likelihood of the most probable path
t—1 t t+1

@ Achieve this by changing the summation to a maximisation in
the recursion:

Vi(j) = max Ve1(1)ajjbj(xc)

o Changing the recursion in this way gives the likelihood of the
most probable path

@ We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path

ASR Lectures 4&5 56 ASR Lectures 4&5 57

@ Initialization

Backpointers to the previous state on the most probable path

t—1 t t+1 bto(
@ Recursion
. N .
Ve(J) = max Veoy (1) abj(x:)
. N .
bte(j) = argmax Ve1(7)ajbj(xt)
@ Termination

P* = VT(SE) = mﬁ;’xlx VT(i)a,—E

* N .
Vi (k) st = btr(qe) = argmax Vr(i)aie

ASR Lectures 4&5 58 ASR Lectures 4&5 59

Viterbi Backtrace

Backtrace to find the state sequence of the most probable path

btt+1 (k)=l

ASR Lectures 4&5 60

Viterbi Training
o If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state
@ A state-time alignment can be obtained using the most

probable path obtained by Viterbi decoding
@ Maximum likelihood estimate of aj;, if C(i — j) is the count

of transitions from / to j
_ C(i—=])

T Cli— k)

o Likewise if Z; is the set of observed acoustic feature vectors
assigned to state j, we can use the standard maximum
likelihood estimates for the mean and the covariance:

ZXEZJ' X

3

pj=—=-"—
1zl
s _ Txez(x -) -)T
’ 1Zj]

Backward probabilities

@ To estimate the state occupation probabilities it is useful to
define (recursively) another set of probabilities—the Backward
probabilities

Be(J) = p(xeq1, - x7[S(t) =), A)
The probability of future observations given a the HMM is in
state j at time t
@ These can be recursively computed (going backwards in time)
o Initialisation
Br(i)=ai

o Recursion

N
Be(i) = Zaijbj(xrﬂ)ﬁtﬂ(j) fort=T-1,...,1

=1
o Termination

P(X|A) = Bo(1) =Y aybj(x1)B1(J) = ar(se)

j=1

ASR Lectures 4&5 64

3. Training: Forward-Backward algorithm

o Goal: Efficiently estimate the parameters of an HMM X from
an observation sequence

@ Assume single Gaussian output probability distribution

bj(x) = p(x|j) = N(x; pj, =)

o Parameters A:
e Transition probabilities aj;:

Za,-jzl
i

o Gaussian parameters for state j:
mean vector p;; covariance matrix X;

EM Algorithm

o Viterbi training is an approximation—we would like to
consider all possible paths
@ In this case rather than having a hard state-time alignment we
estimate a probability
o State occupation probability: The probability ;(j) of
occupying state j at time t given the sequence of
observations.
Compare with component occupation probability in a GMM
@ We can use this for an iterative algorithm for HMM training:
the EM algorithm (whose adaption to HMM is called ‘Baum-Welch algorithm’)
o Each iteration has two steps:
E-step estimate the state occupation probabilities
(Expectation)
M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)

ASR Lectures 4&5 63

Backward Recursion

Be(4) = Plxern, - x7|S(0)=1,3) = Y- aybi(xen) e ()

t-1 t t+1

Bt+l(k)

ASR Lectures 4&5 65

State Occupation Probability Re-estimation of Gaussian parameters

o The state occupation probability v:(;) is the probability of
occupying state j at time t given the sequence of observations
@ Express in terms of the forward and backward probabilities: o The sum of state occupation probabilities through time for a
. . 1 . , state, may be regarded as a “soft” count
1(J) = S(8) =X A) = ——ar(j)B:()) Y e regareec e "
ar(se) @ We can use this “soft” alignment to re-estimate the HMM
recalling that p(X|) = ar(sg) parameters:
@ Since -]
. . . A —1 7t)X
0 (7)B(J) = plxs, .6, S(£) =1 A) = B
pxest, . xTIS(6) =], A) VU
= p(X1, -y Xty X 15 - XT, S(E) =/ A) 3= 210l)(:t — HJ.)(X —)
= p(X,S(t)=j|A) =1 7e(d)
, P(X, 5(t)=Jj[A)
P(S(t)=j|X,A) =
BCO=XN ="

Re-estimation of transition probabilities

o Similarly to the state occupation probability, we can estimate
&:(i, J), the probability of being in i at time t and j at
t + 1, given the observations:

&7, J) = P(S()=1i,S(t+1)=j|X, A)

_ p(S(0=7.5(t+1) =), X|A)
P(XIN)

_ ae(i)aybi(xe1)Beia(J)
aT(sE)

@ We can use this to re-estimate the transition probabilities

éi' — 21:1 §t(’7./)
LY Y&l k)

Pulling it all together

o [terative estimation of HMM parameters using the EM
algorithm. At each iteration

E step For all time-state pairs

@ Recursively compute the forward probabilities
a(j) and backward probabilities 3:()

@ Compute the state occupation probabilities
7e(J) and & (i, J)

M step Based on the estimated state occupation
probabilities re-estimate the HMM parameters:
mean vectors u;, covariance matrices X; and
transition probabilities aj;

@ The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm

ASR Lectures 4&5 (1] ASR Lectures 4&5 69

Extension to a corpus of utterances Extension to Gaussian mixture model (GMM)

o We usually train from a large corpus of R utterances
o If x] is the tth frame of the rth utterance X" then we can

compute the probabilities o (), B7(J), vi(J) and &(7, J)
as before

@ The re-estimates are as before, except we must sum over the
R utterances, eg:

R T .
fi = Zr:l Zt:l vE(J)Xt
j = R o
SR Y G)

ASR Lectures 4&5

@ The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

@ In this case an M-component Gaussian mixture model is an
appropriate density function:

M
bi(x) = p(x|S=j) = Y Gim N (X: tjm: Zjm)
m=1

Given enough components, this family of functions can model
any distribution.

@ Train using the EM algorithm, in which the component
estimation probabilities are estimated in the E-step

ASR Lectures 4&5 71

EM training of HMM/GMM Doing the computation

@ Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities v¢(j, m): the probability of
occupying mixture component m of state j at time t.

(&tm(j) in Jurafsky and Martin's SLP)

@ We can thus re-estimate the mean of mixture component m

of state j as follows

~A EZ-:I Ye(J, m)xe
HKim = ——F .
D=1 7e(J 5 m)
And likewise for the covariance matrices (mixture models
often use diagonal covariance matrices)
@ The mixture coefficients are re-estimated in a similar way to
transition probabilities: T)
Ejm — thl 'Yt(.]) m)
2%21 Z;r:1 Ye(J, ')

ASR Lectures 4&5

A note on HMM topology

385 84488 WE

left-to-right model parallel path left-to—right model ergodic model

air a2 ai3 0 0 ai ai 313 A ais
a;p a O 0 ax a3 ax 0 a1 ax a3 au ax
0 a» ax 0 0 a3 ass ass a3 as a3 ass as
0 0 as3 0 0 0 as ass 41 a2 A3 A s
0 0 0 0 ass as1 as2 as3 as4 ass

left-to-right HMM with 3 ~ 5 states
ergodic HMM

Speech recognition:
Speaker recognition:

ASR Lectures 4&5

Summary: HMMs

@ HMMs provide a generative model for statistical speech
recognition
@ Three key problems
@ Computing the overall likelihood: the Forward algorithm
@ Decoding the most likely state sequence: the Viterbi algorithm
© Estimating the most likely parameters: the EM
(Forward-Backward) algorithm
@ Solutions to these problems are tractable due to the two key
HMM assumptions
@ Conditional independence of observations given the current
state
@ Markov assumption on the states

ASR Lectures 4&5

@ The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

@ This can cause floating point underflow problems
@ In practice computations are performed in the log domain (in
which multiplies become adds)

@ Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians

ASR Lectures 4&5 73
A note on HMM emission probabilities
all a”ZZ a33

aOl alZ a34

b, (x%bZ(XT/V\ Zs(x 1/\

emission pdfs

Emission prob.
continuous density | GMM, NN/DNN
discrete probability | VQ
continuous density | tied mixture

Continuous (density) HMM
Discrete (probability) HMM
Semi-continuous HMM
(tied-mixture HMM)

ASR Lectures 4&5 75

References: HMMs

o Gales and Young (2007). “The Application of Hidden Markov
Models in Speech Recognition”, Foundations and Trends in
Signal Processing, 1 (3), 195-304: section 2.2.

o Jurafsky and Martin (2008). Speech and Language Processing
(2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at
http://www.cs.colorado.edu/~martin/SLP/Errata/
SLP2-PIEV-Errata.html)

o Rabiner and Juang (1989). “An introduction to hidden
Markov models”, IEEE ASSP Magazine, 3 (1), 4-16.

@ Renals and Hain (2010). “Speech Recognition”,
Computational Linguistics and Natural Language Processing
Handbook, Clark, Fox and Lappin (eds.), Blackwells.

ASR Lectures 4&5 7

