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Overview

Speech Signal Analysis for ASR

@ Features for ASR
@ Spectral analysis
@ Cepstral analysis
e Standard features for ASR: FBANK, MFCCs and PLP analysis
@ Dynamic features

Reading:
@ Jurafsky & Martin, sec 9.3

@ P Taylor, Text-to-Speech Synthesis, chapter 12, signal
processing background chapter 10
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Speech signal analysis for ASR
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Speech production model
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A/D conversion — Sampling

Convert analogue signals in digital form
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A/D conversion — Sampling (cont.)

Things to know:

e Sampling Frequency (Fs =1/Ts)
Speech Sufficient F;

Microphone voice (< 10kHz) 20 kHz
Telephone voice (< 4kHz) 8 kHz

@ Analogue low-pass filtering to avoid 'aliasing’
NB: the cut-off frequency should be less than the
Nyquist frequency (= Fs/2)
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Acoustic Features for ASR

Sampled signal I . I
T I T T _ [ ASR \ Acoustic feature vectors‘ Acoustic
x(n) \ Front End / ot(k) Model

Speech signal analysis to produce a sequence of acoustic feature
vectors
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Acoustic Features for ASR

Desirable characteristics of acoustic features used for ASR:
@ Features should contain sufficient information to distinguish
between phones
e good time resolution (10ms)
e good frequency resolution (20 ~ 40 channels)
Be separated from Fy and its harmonics
Be robust against speaker variation

Be robust against noise or channel distortions
Have good “pattern recognition characteristics”

o low feature dimension
o features are independent of each other (NB: this applies to
GMMs, but not required for NN-based systems)
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MFCC-based front end for ASR
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Pre-emphasis and spectral tilt

@ Pre-emphasis increases the magnitude of higher frequencies in
the speech signal compared with lower frequencies
e Spectral Tilt

o The speech signal has more energy at low frequencies (for
voiced speech)
o This is due to the glottal source (see the figure)

@ Pre-emphasis (first-order) filter boosts higher frequencies:

X'[tq] = x[tq] — ax[tg—1] 0.95 < @ < 0.99
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Pre-emphasis: example
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(Jurafsky & Martin, fig. 9.9)
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@ The speech signal is constantly changing (non-stationary)

@ Signal processing algorithms usually assume that the signal is
stationary

@ Piecewise stationarity: model speech signal as a sequence of
frames (each assumed to be stationary)

e Windowing: multiply the full waveform s[n] by a window
w(n] (in time domain):

x[n] = wlnls[n]  (x[n] = wln] '[tg+n] )

e Simply cutting out a short segment (frame) from s[n] is a
rectangular window — causes discontinuities at the edges of
the segment

@ Instead, a tapered window is usually used
e.g. Hamming (a = 0.46164) or Hanning (oo = 0.5) window

2
w([n] = (1—a) — a.cos <LT1> L : window width

ASR Lectures 2&3 12



Windowing and spectral analysis

e Window the signal x'[t4]
into frames x;[n] and apply windowing
Fourier Transform to each
segment.

e Short frame width:
wide-band,
high time resolution,
low frequency resolution
e Long frame width:
narrow-band,
low time resolution,
high frequency resolution

e For ASR:

o frame width ~ 25ms T
o frame shift ~ 10ms Short-time power spectrum  [X[k]I?

X[t

Magnitude
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Effect of windowing — time domain
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(Taylor, fig 12.1)
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Effect of windowing — frequency domain
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Effect of windowing — frequency domain
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Discrete Fourier Transform (DFT)

@ Purpose: extracts spectral information from a windowed
signal (i.e. how much energy at each frequency band)

@ Input: windowed signal x[0],. .., x[L—1] (time domain)

@ Output: a complex number X[k] for each of N frequency
bands representing magnitude and phase for the kth frequency
component (frequency domain)

e Discrete Fourier Transform (DFT):

X[k] = Nz_:lx[n] exp (—j2l\7;kn>

n=0

NB: exp(j6) = € = cos(#) + jsin(6)
e Fast Fourier Transform (FFT) — efficient algorithm for
computing DFT when N is a power of 2, and N > L.
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Wide-band and narrow-band spectrograms
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Short-time spectral analysis

windowing
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DFT Spectrum
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DFT Spectrum Features for ASR

e Equally-spaced frequency bands — but human hearing less
sensitive at higher frequencies (above ~ 1000Hz)

@ The estimated power spectrum contains harmonics of FO0,
which makes it difficult to estimate the envelope of the
spectrum

T \
12 Log IX(W)l — 7

\ \ \ \
0 50 100 150 200 250

@ Frequency bins of STFT are highly correlated each other, i.e.
power spectrum representation is highly redundant
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Physical quality Perceptual quality

Intensity Loudness

Fundamental frequency Pitch

Spectral shape Timbre

Onset/offset time Timing

Phase difference in binaural hearing Location

Technical terms

@ equal-loudness contours
@ masking
@ auditory filters (critical-band filters)

@ critical bandwidth
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Nonlinear frequency scaling

Mel frequency [Mel]

Human hearing is less sensitive to higher frequencies — thus
human perception of frequency is nonlinear

Mel scale Bark scale

M(f) = 1127In(1 + £/700) b(f) = 13 arctan(0.00076f)
+ 3.5arctan((f/7500)?)
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Mel-Filter Bank

@ Apply a mel-scale filter bank to DFT power spectrum to
obtain mel-scale power spectrum

@ Each filter collects energy from a number of frequency bands
in the DFT

@ Linearly spaced < 1000 Hz, logarithmically spaced > 1000 Hz

DFT(STFT) power spectrum IX(k)

— Frequency bins

Triangular band-pass filters ;

|m,|m2| |mk'| M

Mel-scale power spectrum
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Mel-Filter Bank (cont.)

N
|Yelml| = Wan(K) [Xe[K]]

k=1
where  k : DFT bin number (1,...,N)
m : mel-filter bank number (1,..., M).

@ How many number of mel-filter channels?

~ 20 for GMM-HMM based ASR
20 ~ 40 for DNN (+HMM) based ASR

ASR Lectures 2&3 26



Log Mel Power Spectrum

@ Compute the log magnitude squared of each mel-filter bank
output: log |Y[m]?

o Taking the log compresses the dynamic range

e Human sensitivity to signal energy is logarithmic — i.e.
humans are less sensitive to small changes in energy at high
energy than small changes at low energy

o Log makes features less variable to acoustic coupling variations

e Removes phase information — not important for speech
recognition (not everyone agreeswith this)

o Aka “log mel-filter bank outputs” or "FBANK features”,
which are widely used in recent DNN-HMM based ASR
systems
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DFT Spectrum Features for ASR

@ Equally-spaced frequency bands — but human hearing less
sensitive at higher frequencies (above ~ 1000Hz)

@ The estimated power spectrum contains harmonics of FO0,
which makes it difficult to estimate the envelope of the
spectrum

T \
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@ Frequency bins of STFT are highly correlated each other, i.e.
power spectrum representation is highly redundant
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Cepstral Analysis

@ Source-Filter model of speech production

e Source: Vocal cord vibrations create a glottal source waveform

o Filter: Source waveform is passed through the vocal tract:
position of tongue, jaw, etc. give it a particular shape and
hence a particular filtering characteristic

@ Source characteristics (Fo, dynamics of glottal pulse) do not
help to discriminate between phones

The filter specifies the position of the articulators

. and hence is directly related to phone discrimination

Cepstral analysis enables us to separate source and filter
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Cepstral Analysis

Split power spectrum into spectral envelope and Fy harmonics.
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The Cepstrum

@ Cepstrum obtained by applying inverse DFT to log magnitude
spectrum (may be mel-scaled)

e Cepstrum is time-domain (we talk about quefrency)

@ Inverse DFT:
M 7T
ye[k] = mz_:llog(|Yt[m]|)cos (k(m—0.5)M> . k=0,...,J

@ Since log power spectrum is real and symmetric the inverse
DFT is equivalent to a discrete cosine transform (DCT)
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MFCCs

@ Smoothed spectrum: transform to cepstral domain, truncate,
transform back to spectral domain

@ Mel-frequency cepstral coefficients (MFCCs): use the cepstral
coefficients directly

Widely used as acoustic features in HMM-based ASR

First 12 MFCCs are often used as the feature vector (removes
FO information)

Less correlated than spectral features — easier to model than
spectral features

Very compact representation — 12 features describe a 20ms
frame of data

For standard HMM-based systems, MFCCs result in better
ASR performance than filter bank or spectrogram features
MFCCs are not robust against noise
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PLP — Perceptual Linear Prediction

@ PLP (Hermansky, JASA 1990)

SPEECH

@ Uses equal loudness pre-emphasis

Fourier .
Transform and cube-root compression
Magnitude | o s 1 ! (motivated by perceptual results)
Squared rather than log compression

Critical-Band veee i L
Integration /W\ /X\ @ Uses linear predictive

auto-regressive modelling to obtain
cepstral coefficients

Equal Loudness

reemphasis
Intensity to
CLoudneys_s @ PLP has been shown to lead to
ompression .
Inverse  [—— ' e slightly better ASR accuracy
Fourier H :
Transtom ° shEhtIy better noise
Linear Prediction robustness
P .
9lnl = 3" ayeln—K] compared with MFCCs
= PLP
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Dynamic features

@ Speech is not constant frame-to-frame, so we can add features
to do with how the cepstral coefficients change over time

@ Ax, A?x are delta features (dynamic features / time
derivatives)

@ Simple calculation of delta features d(t) at time t for cepstral

feature c(t) (e.g. y:[j]):
d(t) = c(t+1)—c(t—1)
2
@ More sophisticated approach estimates the temporal derivative
by using regression to estimate the slope (typically using 4
frames each side)
e “Standard” ASR features (for GMM-based systems) are 39
dimensions:
e 12 MFCCs, and energy
e 12 A MFCCGCs, A energy
e 12 A% MFCCs, A? energy
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Estimating dynamic features

c(t)

Ito time
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Feature Transforms

@ Orthogonal transformation (orthogonal bases)

o DCT (discrete cosine transform)
o PCA (principal component analysis)

@ Transformation based on the bases that maximises the
separability between classes.

o LDA (linear discriminant analysis) / Fisher's linear discrminant
o HLDA (heteroscedastic linear discriminant analysis)
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Acoustic features in state-of-the-art ASR systems

See Tables 1, 2, and 3 in

Jinyu Li, Dong Yu, Jui-Ting Huang, and Yifan Gong,

“Improving Wideband Speech Recognition Using Mixed-Bandwidth
Training Data In CD-DNN-HMM",

2012 IEEE Workshop in Spoken Language Technology (SLT2012).
http://research-srv.microsoft.com/pubs/179159/11i.pdf
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http://research-srv.microsoft.com/pubs/179159/li.pdf

Summary: Speech Signal Analysis for ASR

Good characteristics of ASR features
e FBANK features

Short-time DFT analysis

Mel-filter bank

Log magnitude squared

Widely used for DNN ASR (M = 40)
CCs - mel frequency cepstral coefficients
o FBANK features

o Inverse DFT (DCT)

o Use first few (12) coefficients
Widely used for GMM-HMM ASR
Delta features

39-dimension feature vector (for GMM-HMM ASR):
MFCC-12 + energy; + Deltas; 4+ Delta-Deltas

M

T
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