Speech Signal Analysis

Hiroshi Shimodaira and Steve Renals

Automatic Speech Recognition— ASR Lectures 2&3 14,18 January 2016

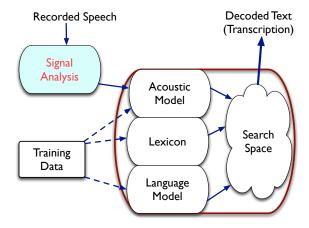
Speech Signal Analysis for ASR

- Features for ASR
- Spectral analysis
- Cepstral analysis
- Standard features for ASR: FBANK, MFCCs and PLP analysis
- Dynamic features

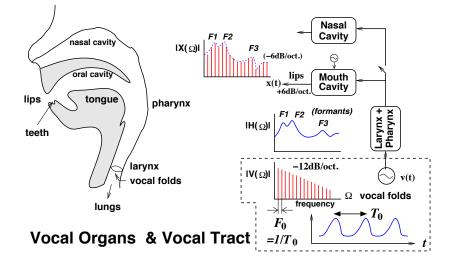
Reading:

- Jurafsky & Martin, sec 9.3
- P Taylor, *Text-to-Speech Synthesis*, chapter 12, signal processing background chapter 10

Speech signal analysis for ASR

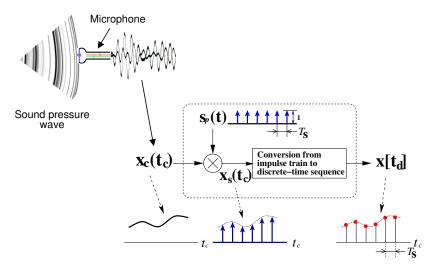


Speech production model



A/D conversion — Sampling

Convert analogue signals in digital form



Things to know:

• Sampling Frequency ($F_s = 1/T_s$)

Speech	Sufficient F _s
Microphone voice (< 10 kHz)	20 <i>kHz</i>
Telephone voice (< 4 <i>kHz</i>)	8 <i>kHz</i>

• Analogue low-pass filtering to avoid 'aliasing' NB: the cut-off frequency should be less than the Nyquist frequency (= $F_s/2$)

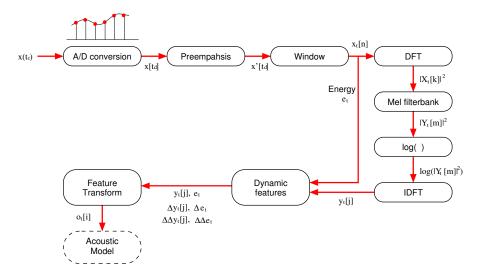
Acoustic Features for ASR

Speech signal analysis to produce a sequence of acoustic feature vectors

Desirable characteristics of acoustic features used for ASR:

- Features should contain sufficient information to distinguish between phones
 - good time resolution (10ms)
 - good frequency resolution (20 \sim 40 channels)
- Be separated from F_0 and its harmonics
- Be robust against speaker variation
- Be robust against noise or channel distortions
- Have good "pattern recognition characteristics"
 - low feature dimension
 - features are independent of each other (NB: this applies to GMMs, but not required for NN-based systems)

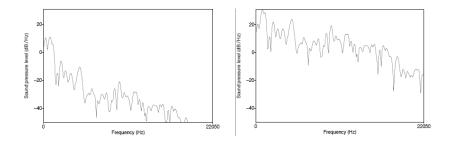
MFCC-based front end for ASR



- Pre-emphasis increases the magnitude of higher frequencies in the speech signal compared with lower frequencies
- Spectral Tilt
 - The speech signal has more energy at low frequencies (for voiced speech)
 - This is due to the glottal source (see the figure)
- Pre-emphasis (first-order) filter boosts higher frequencies:

$$x'[t_d] = x[t_d] - \alpha x[t_d - 1]$$
 0.95 < α < 0.99

Pre-emphasis: example



Vowel /aa/ - time slice of the spectrum

(Jurafsky & Martin, fig. 9.9)

Windowing

- The speech signal is constantly changing (non-stationary)
- Signal processing algorithms usually assume that the signal is stationary
- Piecewise stationarity: model speech signal as a sequence of **frames** (each assumed to be stationary)
- **Windowing**: multiply the full waveform *s*[*n*] by a window *w*[*n*] (in time domain):

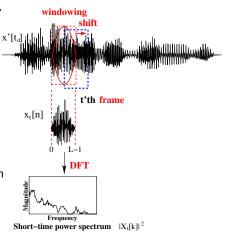
 $\boldsymbol{x[n]} = \boldsymbol{w[n]} \boldsymbol{s[n]} \qquad (x_t[n] = \boldsymbol{w[n]} \boldsymbol{x'[t_d+n]})$

- Simply cutting out a short segment (frame) from *s*[*n*] is a rectangular window causes discontinuities at the edges of the segment
- Instead, a tapered window is usually used e.g. Hamming ($\alpha = 0.46164$) or Hanning ($\alpha = 0.5$) window

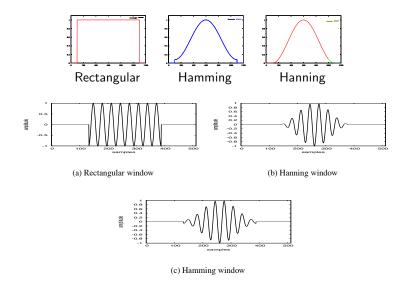
$$w[n] = (1-\alpha) - \alpha \cos\left(\frac{2\pi n}{L-1}\right)$$
 L: window width

Windowing and spectral analysis

- Window the signal x'[t_d] into frames x_t[n] and apply Fourier Transform to each segment.
 - Short frame width: wide-band, high time resolution, low frequency resolution
 - Long frame width: *narrow-band*, low time resolution, high frequency resolution
- For ASR:
 - $\bullet~{\rm frame}~{\rm width}~{\sim}~25 {\it ms}$
 - frame shift $\sim 10 ms$

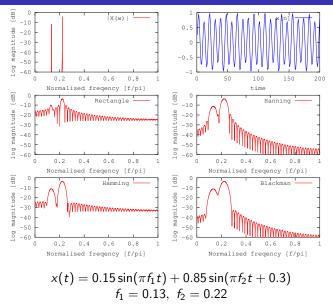


Effect of windowing — time domain

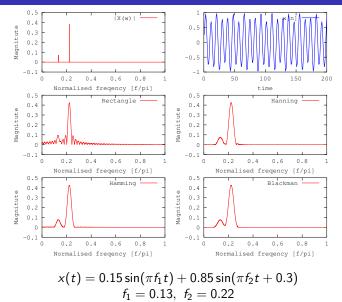


(Taylor, fig 12.1)

Effect of windowing — frequency domain



Effect of windowing — frequency domain



Discrete Fourier Transform (DFT)

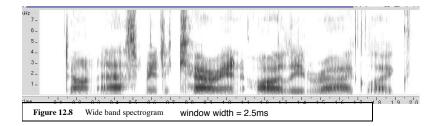
- Purpose: extracts spectral information from a windowed signal (i.e. how much energy at each frequency band)
- Input: windowed signal $x[0], \ldots, x[L-1]$ (time domain)
- Output: a complex number X[k] for each of N frequency bands representing magnitude and phase for the kth frequency component (frequency domain)
- Discrete Fourier Transform (DFT):

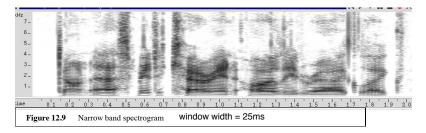
$$X[k] = \sum_{n=0}^{N-1} x[n] \exp\left(-j\frac{2\pi}{N}kn\right)$$

NB: $\exp(j\theta) = e^{j\theta} = \cos(\theta) + j\sin(\theta)$

 Fast Fourier Transform (FFT) — efficient algorithm for computing DFT when N is a power of 2, and N > L.

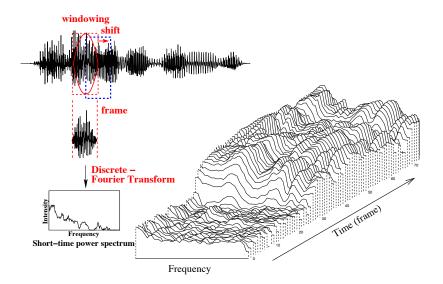
Wide-band and narrow-band spectrograms

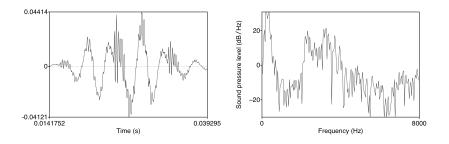




(Taylor, figs 12.8, 12.9)

Short-time spectral analysis



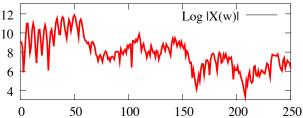


25ms Hamming window of vowel $/\mathrm{iy}/$ and its spectrum computed by DFT

(Jurafsky and Martin, fig 9.12)

DFT Spectrum Features for ASR

- Equally-spaced frequency bands but human hearing less sensitive at higher frequencies (above \sim 1000Hz)
- The estimated power spectrum contains harmonics of F0, which makes it difficult to estimate the envelope of the spectrum



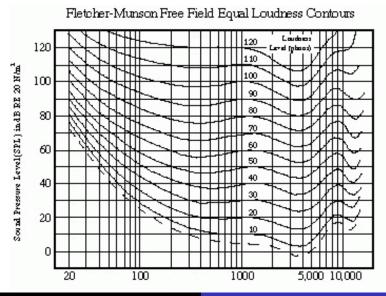
• Frequency bins of STFT are highly correlated each other, i.e. power spectrum representation is highly redundant

Physical quality	Perceptual quality
Intensity	Loudness
Fundamental frequency	Pitch
Spectral shape	Timbre
Onset/offset time	Timing
Phase difference in binaural hearing	Location

Technical terms

- equal-loudness contours
- masking
- auditory filters (critical-band filters)
- critical bandwidth

Equal loudness contour



Nonlinear frequency scaling

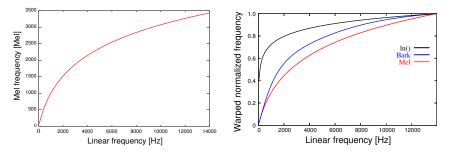
Human hearing is less sensitive to higher frequencies — thus human perception of frequency is nonlinear

Mel scale

Bark scale

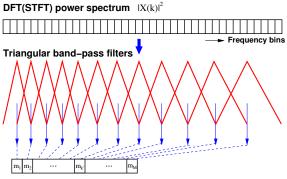
$$M(f) = 1127 \ln(1 + f/700)$$

$$b(f) = 13 \arctan(0.00076f) \\+ 3.5 \arctan((f/7500)^2)$$



Mel-Filter Bank

- Apply a mel-scale filter bank to DFT power spectrum to obtain mel-scale power spectrum
- Each filter collects energy from a number of frequency bands in the DFT
- $\bullet\,$ Linearly spaced < 1000 Hz, logarithmically spaced > 1000 Hz



Mel-scale power spectrum

Mel-Filter Bank (cont.)

$$|Y_t[m]| = \sum_{k=1}^{N} W_m(k) |X_t[k]|$$

where k: DFT bin number (1, ..., N)m: mel-filter bank number (1, ..., M).

• How many number of mel-filter channels?

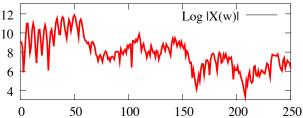
pprox 20	for GMM-HMM based ASR
20 ~ 40	for DNN (+HMM) based ASR

Log Mel Power Spectrum

- Compute the log magnitude squared of each mel-filter bank output: log |Y[m]|²
 - Taking the log compresses the dynamic range
 - Human sensitivity to signal energy is logarithmic i.e. humans are less sensitive to small changes in energy at high energy than small changes at low energy
 - Log makes features less variable to acoustic coupling variations
 - Removes phase information not important for speech recognition (not everyone agreeswith this)
- Aka "log mel-filter bank outputs" or "FBANK features", which are widely used in recent DNN-HMM based ASR systems

DFT Spectrum Features for ASR

- Equally-spaced frequency bands but human hearing less sensitive at higher frequencies (above \sim 1000Hz)
- The estimated power spectrum contains harmonics of F0, which makes it difficult to estimate the envelope of the spectrum

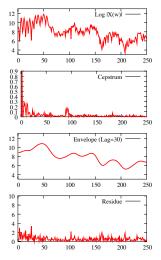


• Frequency bins of STFT are highly correlated each other, i.e. power spectrum representation is highly redundant

- Source-Filter model of speech production
 - Source: Vocal cord vibrations create a glottal source waveform
 - **Filter**: Source waveform is passed through the vocal tract: position of tongue, jaw, etc. give it a particular shape and hence a particular filtering characteristic
- Source characteristics (*F*₀, dynamics of glottal pulse) do not help to discriminate between phones
- The filter specifies the position of the articulators
- ... and hence is directly related to phone discrimination
- Cepstral analysis enables us to separate source and filter

Cepstral Analysis

Split power spectrum into spectral envelope and F_0 harmonics.



Log spectrum (freq domain)

 \Downarrow Inverse Fourier Transform

Cepstrum (time domain) (quefrency)

- Liftering to get low/high part (lifter: filter used in cepstral domain)
- ↓ Fourier Transform

Smoothed log spectrum (freq domain) [low-part of cepstrum]

Fine structure [high-part of cepstrum]

The Cepstrum

- Cepstrum obtained by applying inverse DFT to log magnitude spectrum (may be mel-scaled)
- Cepstrum is time-domain (we talk about quefrency)
- Inverse DFT:

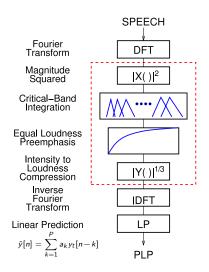
$$y_t[k] = \sum_{m=1}^{M} \log(|Y_t[m]|) \cos\left(k(m-0.5)\frac{\pi}{M}\right), \quad k = 0, \dots, J$$

• Since log power spectrum is real and symmetric the inverse DFT is equivalent to a discrete cosine transform (DCT)

MFCCs

- Smoothed spectrum: transform to cepstral domain, truncate, transform back to spectral domain
- Mel-frequency cepstral coefficients (MFCCs): use the cepstral coefficients directly
 - Widely used as acoustic features in HMM-based ASR
 - First 12 MFCCs are often used as the feature vector (removes F0 information)
 - Less correlated than spectral features easier to model than spectral features
 - Very compact representation 12 features describe a 20ms frame of data
 - For standard HMM-based systems, MFCCs result in better ASR performance than filter bank or spectrogram features
 - MFCCs are not robust against noise

PLP — Perceptual Linear Prediction



- PLP (Hermansky, JASA 1990)
- Uses equal loudness pre-emphasis and cube-root compression (motivated by perceptual results) rather than log compression
- Uses linear predictive auto-regressive modelling to obtain cepstral coefficients
- PLP has been shown to lead to
 - slightly better ASR accuracy
 - slightly better noise robustness

compared with MFCCs

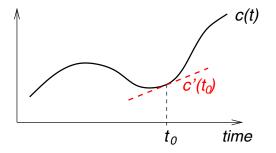
Dynamic features

- Speech is not constant frame-to-frame, so we can add features to do with how the cepstral coefficients change over time
- Δ*, Δ²* are delta features (dynamic features / time derivatives)
- Simple calculation of delta features d(t) at time t for cepstral feature c(t) (e.g. yt[j]):

$$d(t) = rac{c(t+1) - c(t-1)}{2}$$

- More sophisticated approach estimates the temporal derivative by using regression to estimate the slope (typically using 4 frames each side)
- "Standard" ASR features (for GMM-based systems) are 39 dimensions:
 - 12 MFCCs, and energy
 - 12 Δ MFCCs, Δ energy
 - 12 Δ^2 MFCCs, Δ^2 energy

Estimating dynamic features



Feature Transforms

- Orthogonal transformation (orthogonal bases)
 - **DCT** (discrete cosine transform)
 - PCA (principal component analysis)
- Transformation based on the bases that maximises the separability between classes.
 - LDA (linear discriminant analysis) / Fisher's linear discrminant
 - HLDA (heteroscedastic linear discriminant analysis)

See Tables 1, 2, and 3 in

Jinyu Li, Dong Yu, Jui-Ting Huang, and Yifan Gong, "Improving Wideband Speech Recognition Using Mixed-Bandwidth Training Data In CD-DNN-HMM", 2012 IEEE Workshop in Spoken Language Technology (SLT2012). http://research-srv.microsoft.com/pubs/179159/li.pdf

Summary: Speech Signal Analysis for ASR

- Good characteristics of ASR features
- FBANK features
 - Short-time DFT analysis
 - Mel-filter bank
 - Log magnitude squared
 - Widely used for DNN ASR ($M \approx 40$)
- MFCCs mel frequency cepstral coefficients
 - FBANK features
 - Inverse DFT (DCT)
 - Use first few (12) coefficients
 - Widely used for GMM-HMM ASR
- Delta features
- 39-dimension feature vector (for GMM-HMM ASR): MFCC-12 + energy; + Deltas; + Delta-Deltas