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Overview

Speaker Adaptation

@ Introduction: speaker-specific variation, modes of adaptation
Model-based adaptation: MAP

Model-based adaptation: MLLR

Model-based adaptation: Speaker space models

Speaker normalization: VTLN

Adaptive training

Adaptation for hybrid HMM / NN systems
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Speaker independent / dependent / adaptive

@ Speaker independent (SI) systems have long been the focus
for research in transcription, dialogue systems, etc.

@ Speaker dependent (SD) systems can result in word error
rates 2-3 times lower than S| systems (given the same
amount of training data)

@ A Speaker adaptive (SA) system... we would like

e Error rates similar to SD systems

e Building on an SI system

e Requiring only a small fraction of the speaker-specific training
data used by an SD system
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Speaker-specific variation

@ Acoustic model

e Speaking styles

e Accents

o Speech production anatomy (eg length of the vocal tract)
Also non-speaker variation, such as channel conditions
(telephone, reverberant room, close talking mic) and
application domain
Speaker adaptation of acoustic models aims to reduce the
mismatch between test data and the models
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Speaker-specific variation

@ Acoustic model

e Speaking styles

e Accents

o Speech production anatomy (eg length of the vocal tract)
Also non-speaker variation, such as channel conditions
(telephone, reverberant room, close talking mic) and
application domain
Speaker adaptation of acoustic models aims to reduce the
mismatch between test data and the models

@ Pronunciation model: speaker-specific, consistent change in
pronunciation

@ Language model: user-specific documents (exploited in
personal dictation systems)
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Modes of adaptation

@ Supervised or unsupervised

o Supervised: the word level transcription of the adaptation data
is known (and HMMs may be constructed)

o Unsupervised: the transcription must be estimated (eg using
recognition output)
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Modes of adaptation

@ Supervised or unsupervised
o Supervised: the word level transcription of the adaptation data
is known (and HMMs may be constructed)
o Unsupervised: the transcription must be estimated (eg using
recognition output)

@ Static or dynamic

e Static: All adaptation data is presented to the system in a
block before the final system is estimated (eg as used in
enrollment in a dictation system)

e Dynamic: Adaptation data is incrementally available, and
models must be adapted before all adaptation data is available
(eg as used in a spoken dialogue system)
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Approaches to adaptation

@ Model based: Adapt the parameters of the acoustic models to
better match the observed data
e Maximum a posteriori (MAP) adaptation of HMM/GMM
parameters
o Maximum likelihood linear regression (MLLR) of Gaussian
parameters
o Linear input network (LIN) for neural networks
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Approaches to adaptation

@ Model based: Adapt the parameters of the acoustic models to
better match the observed data
e Maximum a posteriori (MAP) adaptation of HMM/GMM
parameters
o Maximum likelihood linear regression (MLLR) of Gaussian
parameters
o Linear input network (LIN) for neural networks

@ Speaker Normalization: Normalize the acoustic data to reduce
mismatch with the acoustic models
o Vocal Tract Length Normalization (VTLN)
o Constrained MLLR (cMLLR) — model-based normalisation!
@ Speaker space: Estimate multiple sets of acoustic models,
characterizing new speakers in terms of these model sets
o Cluster-adapative training
e Eigenvoices
o Speaker codes
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Adaptation and normalization of acoustic models

Feature Space Model Space

Training X, Training
conditions train

Recognition

Test
Condition
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Adaptation and normalization of acoustic models
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Adaptation and normalization of acoustic models
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Desirable properties for model-based speaker adaptation

Compact: relatively few speaker-dependent parameters

Unsupervised: does not require labelled adaptation data, or
changes to the training

Efficient: low computational requirements

Flexible: applicable to different model variants
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Model-based adaptation: The MAP family

@ Basic idea Use the S| models as a prior probability distribution
over model parameters when estimating using speaker-specific
data

ASR Lectures 13&14 9



Model-based adaptation: The MAP family

@ Basic idea Use the S| models as a prior probability distribution
over model parameters when estimating using speaker-specific
data

@ Theoretically well-motivated approach to incorporating the
knowledge inherent in the S| model parameters

ASR Lectures 13&14 9



Model-based adaptation: The MAP family

@ Basic idea Use the S| models as a prior probability distribution
over model parameters when estimating using speaker-specific
data

@ Theoretically well-motivated approach to incorporating the
knowledge inherent in the S| model parameters

e Maximum likelihood (ML) training sets the model parameters
A to maximize the likelihood p(X | A)

ASR Lectures 13&14 9



Model-based adaptation: The MAP family

@ Basic idea Use the S| models as a prior probability distribution
over model parameters when estimating using speaker-specific
data

@ Theoretically well-motivated approach to incorporating the
knowledge inherent in the S| model parameters

e Maximum likelihood (ML) training sets the model parameters
A to maximize the likelihood p(X | A)

@ Maximum a posteriori (MAP) training maximizes the
posterior of the parameters given the data:

P(A [ X) oc p(X | A)po(A)

po(A) is the prior distribution of the parameters

ASR Lectures 13&14 9



Model-based adaptation: The MAP family

@ Basic idea Use the S| models as a prior probability distribution
over model parameters when estimating using speaker-specific
data

@ Theoretically well-motivated approach to incorporating the
knowledge inherent in the S| model parameters

e Maximum likelihood (ML) training sets the model parameters
A to maximize the likelihood p(X | A)

@ Maximum a posteriori (MAP) training maximizes the
posterior of the parameters given the data:

P(A [ X) oc p(X | A)po(A)

po(A) is the prior distribution of the parameters

@ The use of a prior distribution, based on the S| models, means
that less data is required to estimate the speaker-specific
models: we are not starting from complete ignorance
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Recall: ML estimation of GMM/HMM

@ The mean of the mth Gaussian component of the jth state is
estimated using a weighted average

Zn ij(n)xn

i = 5 i)

@ Where > jm(n) is the component occupation probability
@ The covariance of the Gaussian component is given by:

()00 — ) — )
Zn ’ij(n)

2
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e What is pp(A)?
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e What is pp(A)?

o Conjugate prior: the prior distribution has the same form as
the posterior. There is no simple conjugate prior for GMMs,
but an intuitively understandable approach may be employed.

@ If the prior mean is pg, then the MAP estimate for the
adapted mean fi of Gaussian is given by:

f = Tt 27 (n)xn
T+ 22,7(n)

e T is a hyperparameter that controls the balance between the
ML estimate of the mean, its prior value. Typically 7 is in the
range 2-20

@ X, is the adaptation vector at time n

e 7y(n) the probability of this Gaussian at this time

@ As the amount of training data increases, so the MAP
estimate converges to the ML estimate
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Local estimation

@ Basic idea The main drawback to MAP adaptation is that it is
local
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Local estimation

@ Basic idea The main drawback to MAP adaptation is that it is
local

@ Only the parameters belonging to Gaussians of observed
states will be adapted
@ Large vocabulary speech recognition systems have about 10°
Gaussians: most will not be adapted
o Structural MAP (SMAP) approaches have been introduced to
share Gaussians
o The MLLR family of adaptation approaches addresses this by
assuming that transformations for a specific speaker are
systematic across Gaussians, states and models
@ MAP adaptation is very useful for domain adaptation:

o Example: adapting a conversational telephone speech system
(100s of hours of data) to multiparty meetings (10s of hours of
data) works well with MAP
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SMAP: Structural MAP

@ Basic idea share Gaussians by organising them in a tree,
whose root contains all the Gaussians

@ At each node in the tree compute mean offset and diagonal
variance scaling term

@ For each node, its parent is used as a prior distribution

@ This has been shown to speed adaptation compared with
standard MAP, while converging to the same solution as
standard MAP in the large data limit

ASR Lectures 13&14 13



The Linear Transform family

@ Basic idea Rather than directly adapting the model
parameters, estimate a transform which may be applied the
Gaussian means and covariances
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The Linear Transform family

@ Basic idea Rather than directly adapting the model
parameters, estimate a transform which may be applied the
Gaussian means and covariances

@ Linear transform applied to parameters of a set of Gaussians:
adaptation transform parameters are shared across Gaussians

@ This addresses the locality problem arising in MAP
adaptation, since each adaptation data point can affect many
of (or even all) the Gaussians in the system

@ There are relatively few adaptation parameters, so estimation
is robust

@ Maximum Likelihood Linear Regression (MLLR) is the best
known linear transform approach to speaker adaptation
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MLLR: Maximum Likelihood Linear Regression

@ MLLR is the best known linear transform approach to speaker
adaptation

@ Affine transform of mean parameters
o=Ap—+b

If the observation vectors are d-dimension, then Aisa d x d
matrix and b is d-dimension vector

o If we define W = [bA] and n = [1u"]7, then we can write:
i =Wn

@ In MLLR, W is estimated so as to maximize the likelihood of
the adaptation data

@ A single transform W can be shared across a set of Gaussian
components (even all of them!)
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Regression classes

@ The number of transforms may obtained automatically

@ A set of Gaussian components that share a transform is called
a regression class

@ Obtain the regression classes by constructing a regression
class tree

@ Each node in the tree represents a regression class sharing a
transform

@ For an adaptation set, work down the tree until arriving at the
most specific set of nodes for which there is sufficient data

@ Regression class tree constructed in a similar way to state
clustering tree

@ In practice the number of regression may be very small: one
per context-independent phone class, one per broad class, or
even just two (speech/non-speech)
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Estimating the transforms

@ The linear transformation matrix W is obtained by finding its
setting which optimizes the log likelihood

@ Mean adaptation: Log likelihood

L= Z Z v+(n) log <Kr exp (—;(xn ~Wn,) "= (x, - Wm)))

where r ranges over the components belonging to the
regression class

o Differentiating L and setting to O results in an equation for
W: there is no closed form solution if X is full covariance; can
be solved if X is diagonal (but requires a matrix inversion)

@ Variance adaptation is also possible
@ See Gales and Woodland (1996), Gales (1998) for details

ASR Lectures 13&14 17



MLLR in practice

@ Mean-only MLLR results in 10-15% relative reduction in WER

@ Few regression classes and well-estimated transforms work
best in practice

@ Robust adaptation available with about 1 minute of speech;
performance similar to SD models available with 30 minutes
of adaptation data

@ Such linear transforms can account for any systematic (linear)
variation from the speaker independent models, for example
those caused by channel effects.
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Constrained MLLR (cMLLR)

@ Basic idea use the same linear transform for both mean and

covariance

po=~Apn-—b
F—A'TAT
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@ Basic idea use the same linear transform for both mean and
covariance

fr=Ap—t
F—A'TAT

@ No closed form solution but can be solved iteratively
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Constrained MLLR (cMLLR)

@ Basic idea use the same linear transform for both mean and
covariance

po=~Apn-—b
F—A'TAT

@ No closed form solution but can be solved iteratively
o Log likelihood for cMLLR

L=N(Ax,+b;u,X)+log(|A]) A’ =A"1; b =Ab

Equivalent to applying the linear transform to the data!
Also called fMLLR (feature space MLLR)
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Constrained MLLR (cMLLR)

@ Basic idea use the same linear transform for both mean and
covariance
p=~Ap—b
¥ =ATAT
@ No closed form solution but can be solved iteratively
o Log likelihood for cMLLR

L=N(Ax,+b;u,X)+log(|A]) A’ =A"1; b =Ab

Equivalent to applying the linear transform to the data!
Also called fMLLR (feature space MLLR)

@ lterative solution amenable to online/dynamic adaptation, by
using just one iteration for each increment

@ Similar improvement in accuracy to standard MLLR
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Speaker-adaptive training (SAT)

@ Basic idea Rather than Sl seed (canonical) models, construct
models designed for adaptation

@ Estimate parameters of canonical models by training MLLR
mean transforms for each training speaker

@ Train using the MLLR transform for each speaker; interleave
Gaussian parameter estimation and MLLR transform
estimation

@ SAT results in much higher training likelihoods, and improved
recognition results

@ But: increased training complexity and storage requirements

@ SAT using cMLLR, corresponds to a type of speaker
normalization at training time
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Speaker Space Methods

@ Gender-dependent models: sets of HMMs for male and for
female speakers
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Speaker Space Methods

@ Gender-dependent models: sets of HMMs for male and for
female speakers
@ Speaker clustering: sets of HMMs for different speaker clusters
@ Drawbacks:
e Hard division of speakers into groups
e Fragments training data
@ Weighted speaker cluster approaches which use an
interpolated model to represent the current speaker

o Cluster-adaptive training
o Eigenvoices
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Cluster-adaptive training

Basic idea Represent a speaker as a weighted sum of speaker
cluster models

Different cluster models have shared variances and mixture
weights, but separate means

For a new speaker, mean is defined as

H = Z)\Cuc
c

Given the canonical models, only the A. mixing parameters
need estimated for each speaker

Given sets of weights for individual speakers, means of the
clusters may be updated

CAT can reduce WER in large vocabulary tasks by about
4-8% relative

For more, see Gales (2000), Cluster adaptive training of
hidden Markov models, IEEE Trans Speech and Audio
Processing, 8:417-428.
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Eigenvoices

@ Basic idea Construct a speaker space from a set of SD HMMs

@ Could regard each canonical model as forming a dimension of
speaker space

o Generalize by computing PCA of sets of “supervectors”
(concatenated mean vectors), to form speaker space: each
dimension is an “eigenvoice”

@ Represent a new speaker as a combination of eigenvoices
@ Close relation to CAT

@ Computationally intensive, does not scale well to large
vocabulary systems

e For more, see Kuhn et al (2000), Rapid speaker adaptation in
eigenvoice space, IEEE Trans Speech and Audio Processing,
8:695-707.
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Feature normalization

Basic idea: Transform the features to reduce mismatch
between training and test

Cepstral Mean Normalization (CMN): subtract the avergae
feature value from each feature, so each feature has a mean
value of 0. makes features robust to some linear filtering of
the signal (channel variation)

Cepstral Variance Normalization (CVN): Divide feature vector
by standard deviation of feature vectors, so each feature
vector element has a variance of 1

Cepstral mean and variance normalisation, CMN/CVN:

o Xi— p(x)
Xi = ———F~
o(x)
Compute mean and variance statistics over longest available
segments with the same speaker/channel

@ Real time normalisation: compute a moving average
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Vocal Tract Length Normalization (VTLN)

@ Basic idea Normalize the acoustic data to take account of
changes in vocal tract length
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e Puberty: second larynx descent for males
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Vocal Tract Length Normalization (VTLN)

@ Basic idea Normalize the acoustic data to take account of
changes in vocal tract length

@ Vocal tract length (VTL):
o First larynx descent in first 2-3 years of life
e VTL grows according to body size, and is sex-dependent

e Puberty: second larynx descent for males
@ VTL has large effect on the spectrum
e Tube acoustic model: formant positions are inversely

proportional to VTL
o Observation: formant frequencies for women are 20% higher

than for men (on average)
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Vocal Tract Length Normalization (VTLN)

@ Basic idea Normalize the acoustic data to take account of
changes in vocal tract length
@ Vocal tract length (VTL):
o First larynx descent in first 2-3 years of life
e VTL grows according to body size, and is sex-dependent
e Puberty: second larynx descent for males
@ VTL has large effect on the spectrum
e Tube acoustic model: formant positions are inversely
proportional to VTL
o Observation: formant frequencies for women are 20% higher
than for men (on average)
@ VTLN: compensate for differences between speakers via a
warping of the frequency axis
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Approaches to VTLN

~

f— f=guf)

@ Classify by frequency warping function
o Piecewise linear
e Power function
e Bilinear transform
@ Classify by estimation of warping factor o
o Signal-based: estimated directly from the acoustic signal,
through explicit estimation of formant positions
e Model-based: maximize the likelihood of the observed data

given acoustic models and a transcription. « is another
parameter set so as to maximize the likelihood
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Warping functions: Piecewise linear
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Model-based VTLN

@ Basic idea Warp the acoustic features (for a speaker) to
better fit the models — rather than warping the models to fit
the features!
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Model-based VTLN

@ Basic idea Warp the acoustic features (for a speaker) to
better fit the models — rather than warping the models to fit
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likelihood of the acoustic models

o After estimating the warp factors, normalize the acoustic data
and re-estimate the models

@ The process may be iterated
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Model-based VTLN

Basic idea Warp the acoustic features (for a speaker) to
better fit the models — rather than warping the models to fit
the features!

Estimate the warping factor a so as to maximise the
likelihood of the acoustic models

After estimating the warp factors, normalize the acoustic data
and re-estimate the models

The process may be iterated

Model-based VTLN does not directly estimate vocal tract
size, rather it estimates an optimal frequency warping, which
may be affected by other factors (eg FO0)
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Model-based VTLN

Basic idea Warp the acoustic features (for a speaker) to
better fit the models — rather than warping the models to fit
the features!

Estimate the warping factor a so as to maximise the
likelihood of the acoustic models

After estimating the warp factors, normalize the acoustic data
and re-estimate the models

The process may be iterated

Model-based VTLN does not directly estimate vocal tract
size, rather it estimates an optimal frequency warping, which
may be affected by other factors (eg FO0)

Exhaustive search for the optimal warping factor would be
expensive

o Approximate the log likelihood wrt o as a quadratic, and find
the maximum using a line search (Brent's method)
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Model-based VTLN
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VTLN: Warp factor estimation, females, non-normalized

histogram of warping factors for females calculated using non-normalised model
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VTLN: Warp factor estimation, females, pass 1

histogram of warping factors for females after first VTLN training pass
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VTLN: Warp factor estimation, females, pass 2

warping factors histogram 2nd females pass
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VTLN: Warp factor estimation, females, pass 3

warping factors histogram females 3rd pass
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VTLN: Warp factor estimation, males, non-normalized

histogram of warping factors for males calculated using non-normalised model
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VTLN: Warp factor estimation, males, pass 1

number of speakers

histogram of warping factors for males after first VTLN training pass
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VTLN: Warp factor estimation, males, pass 2

warping factors histogram males 2nd pass
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VTLN: Wa
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Speaker adaptation in hybrid HMM/NN systems:

CMLLR feature transformation

@ Basic idea: If HMM/GMM system is used to estimate a single
constrained MLLR adaptation transform, this can be viewed
as a feature space transform

@ Use the HMM/GMM system with the same tied state space
to estimate a single CMLLR transform for a given speaker,
and use this to transform the input speech to the DNN for the
target speaker

e Can operate unsupervised (since the GMM system estimates
the transform)

e Limited to a single transform (regression class)
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Speaker adaptation in hybrid HMM/NN systems:

LIN — Liniear Input Network

@ Basic idea: single linear input layer trained to map input
speaker-dependent speech to speaker-independent network

e Training: linear input network (LIN) can either be fixed as the
identity or (adaptive training) be trained along with the other
parameters

@ Testing: freeze the main (speaker-independent) network and
propagate gradients for speech from the target speaker to the
LIN, which is updated — linear transform learned for each
speaker

@ Requires supervised training data
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~6000 CD phone outputs

e

~2000 hidden units

3-8 hidden layers

~2000 hidden unitsO
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~6000 CD phone outputs

e

~2000 hidden units

3-8 hidden layers

O ~2000 hidden umtsO

Q Transformed Inpuls O
Linear |M
networl

O  9x39 MFCC inputs
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Speaker adaptation in hybrid HMM/NN systems:

Speaker codes

@ Basic idea: Learn a short speaker code vector for each talker

Original Network Composite NN
; Original
Network
Transformed
< Features
Features —f
vector 4 Adaptation
NN
 m—
Speaker Features
Code vector
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Speaker adaptation in hybrid HMM/NN systems:

LHUC — Learning Hidden Unit Contributions

O ~6000 CD phone outputs O

@ Basic idea: Add a learnable @
[l it

speaker dependent noot g
~2000 hidden units

ampolitude to each hidden
unit

3-8 hidden layers

@ Speaker independent:
amplituides set to 1

@ Speaker dependent: learn
amplitudes from data, per ~2000 hidden units

speaker
-
Q inputs O
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Speaker adaptation in hybrid HMM/NN systems:

Experimental Results on TED

TED Talks - IWSLT tst2011
15
1 13.7 132
R
£ 13 12.9
=
12
11
° DNN +LHUC +CMLLR +CMLLR+LHUC
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Summary

Speaker Adaptation

@ One of the most intensive areas of speech recognition research
since the early 1990s

o HMM/GMM

e Substantial progress, resulting in significant, additive,
consistent reductions in word error rate

o Close mathematical links between different approaches

e Linear transforms at the heart of many approaches

o HMM/NN

e Open research topic
o GMM-based feature space transforms somewhat effective
e Direct weight adaptation less effective
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e HMM/GMM

o Gales and Young (2007), The Application of Hidden Markov
Models in Speech Recognition, Foundations and Trends in
Signal Processing, 1 (3), 195-304: section 5.

o Woodland (2001), Speaker adaptation for continuous density
HMMs: A review, ISCA ITRW on Adaptation Methods for
Speech Recognition.

e Gales (1998), Maximum likelihood linear transformations for
HMM-based speech recognition, Computer Speech and
Language, 12:75-98.

e HMM/DNN

o Liao (2013), Speaker adaptation of context dependent deep
neural networks, Proc IEEE ICASSP

o Abdel-Hamid and Jiang (2013), Fast speaker adaptation of
hybrid NN/HMM model for speech recognition based on
discriminative learning of speaker code, Proc IEEE ICASSP

o Swietojanski and Renals (2014), Learning Hidden Unit
Contributions for Unsupervised Speaker Adaptation of Neural
Network Acoustic Models, Proc IEEE SLT
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