Neural Network Language Models

Steve Renals

Automatic Speech Recognition— ASR Lecture 12 2 March 2015

< 3 > <

æ

- Introduction to Neural Networks
- Training feed-forward networks
- Hybrid neural network / HM M acoustic models
- Neural network features Tandem, posteriorgrams
- Deep neural network acoustic models
- Neural network language models

- Introduction to Neural Networks
- Training feed-forward networks
- Hybrid neural network / HMM acoustic models
- Neural network features Tandem, posteriorgrams
- Deep neural network acoustic models
- Neural network language models

n-gram language modelling

- The problem: estimate the probability of a sequence of T words, P(w₁, w₂, ..., w_T) = P(w₁^T)
- Decompose as conditional probabilities

$$P(w_1^T) = \prod_{t=1}^T P(w_t \mid w_1^{t-1})$$

• n-gram approximation: only consider (n-1) words of context:

$$P(w_t \mid w_1^{t-1}) \sim P(w_t \mid w_{t-(n-1)}^{t-1})$$

- Many possible word sequences consider vocab size $|V| = 100\,000$ with a 4-gram
 - 100 000⁴ possible 4-grams, i.e. 10²⁰ parameters
- Most n-grams not in training data zero-probability problem
- Smooth n-gram model with models with smaller context size (interpolation)
- State of the art modified Kneser-Ney smoothing

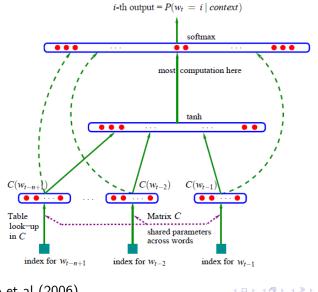
- Curse of dimensionality model size (number of parameters) increases exponentially with context size
- Probability estimation in a high-dimensional discrete smooth
 not smooth, small changes in discrete context may result in large changes in probability estimate
- O Does not take word similarity into account

Distributed representation for language modelling

- Each word is associated with a learned *distributed representation* (feature vector)
- Use a neural network to estimate the conditional probability of the next word given the the distributed representations of the context words
- Learn the distributed representations and the weights of the conditional probability estimate jointly by maximising the log likelihood of the training data
- Similar words (distributionally) will have similar feature vectors

 small change in feature vector will result in small change in
 probability estimate (since the NN is a smooth function)

Neural Probabilistic Language Model



Bengio et al (2006)

< E >

Neural Probabilistic Language Model

- Train using stochastic gradient ascent to maximise log likelihood
- Number of free parameters (weights) scales
 - Linearly with vocabulary size
 - Linearly with context size
- Can be (linearly) interpolated with n-gram model
- Perplexity results on AP News (14M words training). |V| = 18k

model	n	perplexity
NPLM(100,60)	6	109
n-gram (KN)	3	127
n-gram (KN)	4	119
n-gram (KN)	5	117

NPLM — Shortlists

- Majority of the weights (hence majority of the computation) is in the output layer
- Reduce computation by only including the *s* most frequent words at the output the *shortlist* (*S*) (full vocabulary still used for context)
- Use an n-gram model to estimate probabilities of words not in the shortlist
- Neural network thus redistributes probability for the words in the shortlist

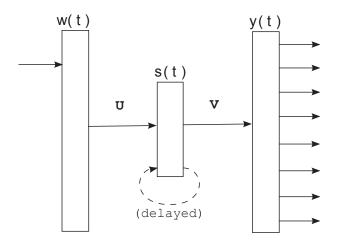
$$egin{aligned} & P_{\mathcal{S}}(h_t) = \sum_{w \in S} P(w|h_t) \ & P(w_t|h_t) = \left\{ egin{aligned} & P_{NN}(w_t|h_t)P_{\mathcal{S}}(h_t) & ext{if} w_t \in S \ & P_{KN}(w_t|h_t) & ext{else} \end{aligned}
ight. \end{aligned}$$

 In a |V| = 50k task a 1024 word shortlist covers 89% of 4-grams, 4096 words covers 97% Speech recognition results on Switchboard 7M / 12M / 27M words in domain data. 500M words background data (broadcast news) Vocab size |V| = 51k, Shortlist size |S| = 12k

WER/% in-domain words 7M 12M 27M KN (in-domain) 25.3 23.0 20.0 NN (in-domain) | 24.5 | 22.2 19.1 KN $(+b/g) \mid 24.1$ 22.3 19.3 NN $(+b/g) \mid 23.7$ 21.8 18.9

- Rather than fixed input context, *recurrently connected* hidden units provide memory
- Model learns "how to remember" from the data
- Recurrent hidden layer allows clustering of variable length histories

RNN LM

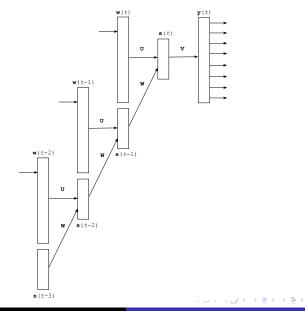


Mikolov (2011)

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

RNN training: back-propagation through time



æ

Factorised RNN LM

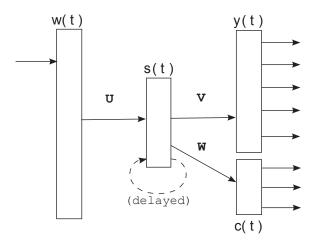


Table 2. Comparison of different neural network architectures onPenn Corpus (1M words) and Switchboard (4M words).

	Penn Corpus		Switchboard	
Model	NN	NN+KN	NN	NN+KN
KN5 (baseline)	-	141	-	92.9
feedforward NN	141	118	85.1	77.5
RNN trained by BP	137	113	81.3	75.4
RNN trained by BPTT	123	106	77.5	72.5

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

- Y Bengio et al (2006), Neural probabilistic language models (sections 6.1, 6.2, 6.3, 6.7, 6.8), Studies in Fuzziness and Soft Computing Volume 194, Springer, chapter 6.
- T Mikolov et al (2011), Extensions of recurrent neural network language model, Proc IEEE ICASSP-2011