
Neural Network Language Models

Steve Renals

Automatic Speech Recognition— ASR Lecture 12
2 March 2015

ASR Lecture 12 Neural Network Language Models 1



Neural networks for speech recognition

Introduction to Neural Networks

Training feed-forward networks

Hybrid neural network / HM M acoustic models

Neural network features – Tandem, posteriorgrams

Deep neural network acoustic models

Neural network language models

ASR Lecture 12 Neural Network Language Models 2



Neural networks for speech recognition

Introduction to Neural Networks

Training feed-forward networks

Hybrid neural network / HMM acoustic models

Neural network features – Tandem, posteriorgrams

Deep neural network acoustic models

Neural network language models

ASR Lecture 12 Neural Network Language Models 2



n-gram language modelling

The problem: estimate the probability of a sequence of T
words, P(w1,w2, . . . ,wT ) = P(wT

1 )
Decompose as conditional probabilities

P(wT
1 ) =

T∏
t=1

P(wt | w t−1
1 )

n-gram approximation: only consider (n− 1) words of context:

P(wt | w t−1
1 ) ∼ P(wt | w t−1

t−(n−1))

Many possible word sequences — consider vocab size
|V | = 100 000 with a 4-gram

100 0004 possible 4-grams, i.e. 1020 parameters

Most n-grams not in training data — zero-probability problem
Smooth n-gram model with models with smaller context size
(interpolation)
State of the art — modified Kneser-Ney smoothing

ASR Lecture 12 Neural Network Language Models 3



Problems with n-grams

1 Curse of dimensionality — model size (number of parameters)
increases exponentially with context size

2 Probability estimation in a high-dimensional discrete smooth
— not smooth, small changes in discrete context may result
in large changes in probability estimate

3 Does not take word similarity into account

ASR Lecture 12 Neural Network Language Models 4



Distributed representation for language modelling

Each word is associated with a learned distributed
representation (feature vector)

Use a neural network to estimate the conditional probability of
the next word given the the distributed representations of the
context words

Learn the distributed representations and the weights of the
conditional probability estimate jointly by maximising the log
likelihood of the training data

Similar words (distributionally) will have similar feature vectors
— small change in feature vector will result in small change in
probability estimate (since the NN is a smooth function)

ASR Lecture 12 Neural Network Language Models 5



Neural Probabilistic Language Model

Bengio et al (2006)
ASR Lecture 12 Neural Network Language Models 6



Neural Probabilistic Language Model

Train using stochastic gradient ascent to maximise log
likelihood

Number of free parameters (weights) scales

Linearly with vocabulary size
Linearly with context size

Can be (linearly) interpolated with n-gram model

Perplexity results on AP News (14M words training).
|V | = 18k

model n perplexity
NPLM(100,60) 6 109
n-gram (KN) 3 127
n-gram (KN) 4 119
n-gram (KN) 5 117

ASR Lecture 12 Neural Network Language Models 7



NPLM — Shortlists

Majority of the weights (hence majority of the computation) is
in the output layer
Reduce computation by only including the s most frequent
words at the output — the shortlist (S) (full vocabulary still
used for context)
Use an n-gram model to estimate probabilities of words not in
the shortlist
Neural network thus redistributes probability for the words in
the shortlist

PS(ht) =
∑
w∈S

P(w |ht)

P(wt |ht) =

{
PNN(wt |ht)PS(ht) ifwt ∈ S
PKN(wt |ht) else

In a |V | = 50k task a 1024 word shortlist covers 89% of
4-grams, 4096 words covers 97%

ASR Lecture 12 Neural Network Language Models 8



NPLM — ASR results

Speech recognition results on Switchboard

7M / 12M / 27M words in domain data.

500M words background data (broadcast news)

Vocab size |V | = 51k , Shortlist size |S | = 12k

WER/%
in-domain words 7M 12M 27M

KN (in-domain) 25.3 23.0 20.0
NN (in-domain) 24.5 22.2 19.1

KN (+b/g) 24.1 22.3 19.3
NN (+b/g) 23.7 21.8 18.9

ASR Lecture 12 Neural Network Language Models 9



Recurrent Neural Network (RNN) LM

Rather than fixed input context, recurrently connected hidden
units provide memory

Model learns “how to remember” from the data

Recurrent hidden layer allows clustering of variable length
histories

ASR Lecture 12 Neural Network Language Models 10



RNN LM

EXTENSIONS OF RECURRENT NEURAL NETWORK LANGUAGEMODEL

Tomáš Mikolov1,2, Stefan Kombrink1, Lukáš Burget1, Jan “Honza” Černocký1, Sanjeev Khudanpur2

1Brno University of Technology, Speech@FIT, Czech Republic
2 Department of Electrical and Computer Engineering, Johns Hopkins University, USA

{imikolov,kombrink,burget,cernocky}@fit.vutbr.cz, khudanpur@jhu.edu

ABSTRACT
We present several modifications of the original recurrent neural net-
work language model (RNN LM). While this model has been shown
to significantly outperform many competitive language modeling
techniques in terms of accuracy, the remaining problem is the com-
putational complexity. In this work, we show approaches that lead
to more than 15 times speedup for both training and testing phases.
Next, we show importance of using a backpropagation through time
algorithm. An empirical comparison with feedforward networks is
also provided. In the end, we discuss possibilities how to reduce the
amount of parameters in the model. The resulting RNN model can
thus be smaller, faster both during training and testing, and more
accurate than the basic one.

Index Terms— language modeling, recurrent neural networks,
speech recognition

1. INTRODUCTION

Statistical models of natural language are a key part of many systems
today. The most widely known applications are automatic speech
recognition (ASR), machine translation (MT) and optical charac-
ter recognition (OCR). In the past, there was always a struggle be-
tween those who follow the statistical way, and those who claim that
we need to adopt linguistics and expert knowledge to build mod-
els of natural language. The most serious criticism of statistical ap-
proaches is that there is no true understanding occurring in these
models, which are typically limited by the Markov assumption and
are represented by n-gram models. Prediction of the next word is
often conditioned just on two preceding words, which is clearly in-
sufficient to capture semantics. On the other hand, the criticism of
linguistic approaches was even more straightforward: despite all the
efforts of linguists, statistical approaches were dominating when per-
formance in real world applications was a measure.

Thus, there has been a lot of research effort in the field of statis-
tical language modeling. Among models of natural language, neural
network based models seemed to outperform most of the competi-
tion [1] [2], and were also showing steady improvements in state of
the art speech recognition systems [3]. The main power of neural
network based language models seems to be in their simplicity: al-
most the same model can be used for prediction of many types of
signals, not just language. These models perform implicitly cluster-
ing of words in low-dimensional space. Prediction based on this
compact representation of words is then more robust. No additional
smoothing of probabilities is required.

This work was partly supported by European project DIRAC (FP6-
027787), Grant Agency of Czech Republic project No. 102/08/0707, Czech
Ministry of Education project No. MSM0021630528 and by BUT FIT grant
No. FIT-10-S-2.

������

�� � �

�� � �

���������

� �

Fig. 1. Simple recurrent neural network.

Among many following modifications of the original model, the
recurrent neural network based language model [4] provides further
generalization: instead of considering just several preceding words,
neurons with input from recurrent connections are assumed to repre-
sent short term memory. The model learns itself from the data how
to represent memory. While shallow feedforward neural networks
(those with just one hidden layer) can only cluster similar words,
recurrent neural network (which can be considered as a deep archi-
tecture [5]) can perform clustering of similar histories. This allows
for instance efficient representation of patterns with variable length.

In this work, we show the importance of the Backpropagation
through time algorithm for learning appropriate short term memory.
Then we show how to further improve the original RNN LM by de-
creasing its computational complexity. In the end, we briefly discuss
possibilities of reducing the size of the resulting model.

2. MODEL DESCRIPTION

The recurrent neural network described in [4] is also called Elman
network [6]. Its architecture is shown in Figure 1. The vector x(t) is
formed by concatenating the vector w(t) that represents the current
word while using 1 of N coding (thus its size is equal to the size of
the vocabulary) and vector s(t − 1) that represents output values in
the hidden layer from the previous time step. The network is trained
by using the standard backpropagation and contains input, hidden
and output layers. Values in these layers are computed as follows:

x(t) = [w(t)T s(t − 1)T ]T (1)

sj(t) = f

 

X

i

xi(t)uji

!

(2)

yk(t) = g

 

X

j

sj(t)vkj

!

(3)

��������������������������������������,((( ,&$663�����

Mikolov (2011)

ASR Lecture 12 Neural Network Language Models 11



RNN training: back-propagation through timeTraining of RNNLM - Backpropagation Through Time

�

������

������

�

�

�

����

������

����

����

������

������

�

�

�

Figure: Recurrent neural network unfolded as a deep feedforward
network, here for 3 time steps back in time.

17 / 59

ASR Lecture 12 Neural Network Language Models 12



Factorised RNN LM

4. SPEEDUP TECHNIQUES

The time complexity of one training step is proportional to

O = (1 + H) × H × τ + H × V (5)

where H is the size of the hidden layer, V size of the vocabulary
and τ the amount of steps we backpropagate the error back in time1.
Usually H << V , so the computational bottleneck is between the
hidden and output layers. This has motivated several researchers
to investigate possibilities how to reduce this huge weight matrix.
Originally, Bengio [1] has merged all low frequency words into one
special token in the output vocabulary, which usually results in 2-3
times speedup without significant degradation of the performance.
This idea was later extended - instead of using unigram distribution
for words that belong to the special token, Schwenk [3] used proba-
bilities from a backoff model for the rare words.

An even more promising approach was based on the assump-
tion that words can be mapped to classes [13] [14]. If we assume
that each word belongs to exactly one class, we can first estimate the
probability distribution over the classes using RNN and then com-
pute the probability of a particular word from the desired class while
assuming unigram distribution of words within the class:

P (wi|history) = P (ci|history)P (wi|ci) (6)

This reduces computational complexity to

O = (1 + H) × H × τ + H × C, (7)

where C is the number of classes. While this architecture has obvi-
ous advantages over the previously mentioned approaches as C can
be order of magnitude smaller than V without sacrificing much of
accuracy, the performance depends heavily on our ability to estimate
classes precisely. The classical Brown clustering is usually not very
useful, as its computational complexity is too high and it is often
faster to estimate the full neural network model.

4.1. Factorization of the output layer

We can go further and assume that the probabilities of words within a
certain class do not depend just on the probability of the class itself,
but also on the history - in context of neural networks, that is the
hidden layer s(t). We can change Equation 6 to

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (8)

The corresponding RNN architecture is shown in Figure 4. This
idea has been already explored by Morin [13] (and in the context
of Maximum Entropy models by Goodman [14]), who extended it
further by assuming that the vocabulary can be represented by a hi-
erarchical binary tree. The drawback of Morin’s approach was the
dependence on WordNet for obtaining word similarity information,
which can be unavailable for certain domains or languages.

In our work, we have implemented simple factorization of the
output layer using classes. Words are assigned to classes proportion-
ally, while respecting their frequencies (this is sometimes referred
to as ’frequency binning’). The amount of classes is a parameter.
For example, if we choose 20 classes, words that correspond to the
first 5% of the unigram probability distribution would be mapped to
class 1 (with Penn Corpus, this would correspond to token ’the’ as

1As suggested to us by Y. Bengio, the τ term can practically disappear
from the computational complexity, provided that the update of weights is
not done at every time step [11].

������

�� � �

�� � �

���������

������

� �

�

Fig. 4. RNN with output layer factorized by class layer.

its unigram probability is about 5%), the words that correspond to
the next 5% of the unigram probability mass would be mapped to
class 2, etc. Thus, the first classes can hold just single words, while
the last classes cover thousands of low-frequency words2.

Instead of computing a probability distribution over all words as
it is specified in (3), we first estimate a probability distribution over
the classes and then a distribution over the words from a single class,
the one that contains the predicted word:

cl(t) = g

 

X

j

sj(t)wlj

!

(9)

yc(t) = g

 

X

j

sj(t)vcj

!

(10)

The activation function g for both these distributions is again
softmax (Equation 4). Thus, we have the probability distribution
both for classes and for words within class that we are interested
in, and we can evaluate Equation 8. The error vector is computed
for both distributions and then we follow the backpropagation algo-
rithm, so the errors computed in the word-based and the class-based
parts of the network are summed together in the hidden layer. The
advantage of this approach is that the network still uses the whole
hidden layer to estimate a (potentially) full probability distribution
over the full vocabulary, while factorization allows us to evaluate just
a subset of the output layer both during the training and during the
test phases. Based on the results shown in Table 3, we can conclude
that fast evaluation of the output layer via classes leads to around
15 times speedup against model that uses full vocabulary (10K), at
a small cost of accuracy. The non-linear behaviour of reported time
complexity is caused by the constant term (1+H)×H ×τ and also
by suboptimal usage of cache with large matrices. With C = 1 and
C = V , the model is equivalent to the full RNN model.

4.2. Compression layer

Alternatively, we can think about the two parts of the original re-
current network separately: first, there is a matrix U responsible for
the input and for the recurrent connections that maintain short term

2After this paper was written, we have found that Emami [18] has pro-
posed a similar technique for reducing computational complexity, by assign-
ing words into statistically derived classes. The novelty of our approach is
thus in showing that simple frequency binning is adequate to obtain reason-
able performance.

����

ASR Lecture 12 Neural Network Language Models 13



Perplexity Results

Table 1. Comparison of different language modeling techniques on
Penn Corpus. Models are interpolated with KN backoff model.

Model PPL
KN5 141
Random forest (Peng Xu) [8] 132
Structured LM (Filimonov) [9] 125
Syntactic NN LM (Emami) [10] 107
RNN trained by BP 113
RNN trained by BPTT 106
4x RNN trained by BPTT (mixture) 98

where f(z) and g(z) are sigmoid and softmax activation functions
(the softmax function in the output layer is used to make sure that
the outputs form a valid probability distribution, i.e. all outputs are
greater than 0 and their sum is 1):

f(z) =
1

1 + e−z
, g(zm) =

ezm

P

k ezk
(4)

The cross entropy criterion is used to obtain an error vector in
the output layer, which is then backpropagated to the hidden layer.
The training algorithm uses validation data for early stopping and
to control learning rate. Training iterates over all the training data
in several epochs before convergence is achieved - usually, 10-20
epochs are needed. However, a valid question is whether the simple
backpropagation (BP) is sufficient to train the network properly -
if we assume that the prediction of the next word is influenced by
information which was present several time steps back, there is no
guarantee that the network will learn to keep this information in the
hidden layer. While the network can remember such information, it
is more by luck than by design.

3. BACKPROPAGATION THROUGH TIME

Backpropagation through time (BPTT) [11] can be seen as an exten-
sion of the backpropagation algorithm for recurrent networks. With
truncated BPTT, the error is propagated through recurrent connec-
tions back in time for a specific number of time steps (here referred
to as τ ). Thus, the network learns to remember information for sev-
eral time steps in the hidden layer when it is learned by the BPTT.
Additional information and practical advices for implementation of
BPTT algorithm are described in [7].

The data used in the following experiments were obtained from
Penn Tree Bank: sections 0-20 were used as training data (about
930K tokens), sections 21-22 as validation data (74K) and sections
23-24 as test data (82K). The vocabulary is limited to 10K words.
The processing of the data is exactly the same as used by [10] and
other researchers. For a comparison of techniques, see Table 1.
KN5 denotes the baseline: interpolated 5-gram model with modified
Kneser Ney smoothing and no count cutoffs.

To improve results, it is often better to train several networks
(that differ either in random initialization of weights or also in the
numbers of parameters) than having one huge network. The combi-
nation of these networks is done by linear interpolation with equal
weights assigned to each model (note similarity to random forests
that are composed of different decision trees [8]). The combination
of various amounts of models is shown in Figure 2.

Figure 3 shows the importance of number of time steps τ in
BPTT. To reduce noise, results are reported as an average of perplex-
ity given by four models with different RNN configurations (250,

0 5 10 15 20 25
95

100

105

110

115

120

125

130

Number of RNN models

P
er

pl
ex

ity
 (P

en
n 

co
rp

us
)

RNN mixture
RNN mixture + KN5

Fig. 2. Linear interpolation of different RNN models trained by
BPTT.

1 2 3 4 5 6 7 8
105

110

115

120

125

130

135

140

145

BPTT step

P
er

pl
ex

ity
 (P

en
n 

co
rp

us
)

average over 4 models
mixture of 4 models
KN5 baseline

Fig. 3. Effect of BPTT training on Penn Corpus. BPTT=1 corre-
sponds to standard backpropagation.

300, 350 and 400 neurons in the hidden layer). Also, a combina-
tion of these models is shown (again, linear interpolation was used).
As can be seen, 4-5 steps of BPTT training seems to be sufficient.
Note that while complexity of the training phase increases with the
amount of steps for which the error is propagated back in time, the
complexity of the test phase is constant.

Table 2 shows comparison of the feedforward [12], simple recur-
rent [4] and BPTT-trained recurrent neural network language models
on two corpora. Perplexity is shown on the test sets for configura-
tions of networks that were working the best on the development
sets. We can see that the simple recurrent neural network already
outperforms the standard feedforward network, while BPTT train-
ing provides another significant improvement.

Table 2. Comparison of different neural network architectures on
Penn Corpus (1M words) and Switchboard (4M words).

Penn Corpus Switchboard
Model NN NN+KN NN NN+KN
KN5 (baseline) - 141 - 92.9
feedforward NN 141 118 85.1 77.5
RNN trained by BP 137 113 81.3 75.4
RNN trained by BPTT 123 106 77.5 72.5

5529

ASR Lecture 12 Neural Network Language Models 14



Reading

Y Bengio et al (2006), Neural probabilistic language models
(sections 6.1, 6.2, 6.3, 6.7, 6.8), Studies in Fuzziness and Soft
Computing Volume 194, Springer, chapter 6.

T Mikolov et al (2011), Extensions of recurrent neural
network language model, Proc IEEE ICASSP–2011

ASR Lecture 12 Neural Network Language Models 15

http://link.springer.com/chapter/10.1007/3-540-33486-6_6
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5947611
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5947611

