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Neural networks for speech recognition

Introduction to Neural Networks

Training feed-forward networks

Hybrid neural network / HMM acoustic models

Neural network features – Tandem, posteriorgrams

Deep neural network acoustic models

Neural network language models
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Neural network acoustic models

Input layer

Hidden layer 1

Hidden layer H-1

Output layer

Hidden layer H

. . .

Input layer takes
several consecutive
frames of acoustic
features

Output layer
corresponds to classes
(e.g. phones, HMM
states)

Multiple non-linear
hidden layers between
input and output

Neural networks also
called multi-layer
perceptrons
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NN vs GMM

Input layer

Hidden layer 1

Hidden layer H-1

Output layer

Hidden layer H

. . .

Potential deep
structure through
multiple hidden layers
(rather than a single
layer of GMMs)

Operates on multiple
frames of input
(rather than a single
frame)

One big network for
everything (rather
than one HMM per
phone)
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Layered neural networks: structure (1)
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Neural network with one hidden layer
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Layered neural networks: structure (2)

d input units, M hidden units, K output units

Hidden layer: each of M units takes a linear combination of
the inputs xi :

bj =
d∑

i=0

w
(1)
ji xi

bj : activations

w
(1)
ji : first layer of weights

Activations transformed by a nonlinear activation function h
(e.g. a sigmoid):

zj = h(bj) =
1

1 + exp(−bj)

zj : hidden unit outputs
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Logisitic sigmoid activation function

g(a) =
1

(1 + exp(−a))
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Logistic sigmoid activation function   g(a) = 1/(1+exp(−a))
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Layered neural networks: structure (3)

Outputs of the hidden units are linearly combined to give
activations of the output units:

ak =
M∑
j=0

w
(2)
kj zj

Output units can be sigmoids, but it is better if they use the
softmax activation function:

yk = g(ak) =
exp(ak)∑K
`=1 exp(a`)

Softmax enforces sum-to-one across outputs

If output unit k corresponds to class Ck , then interpret
outputs of trained network as posterior probability estimates

P(Ck | x) = yk
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Layered neural networks: training

Weights wji are the trainable parameters
Train the weights by adjusting them to minimise a cost
function which measures the error the network outputs ynk (for
the nth frame) compared with the target output tnk

Sum squared error

E n =
1

2

K∑
k=1

||tnk − yn
k ||2

For multiclass classification, the natural cost function is
(negative) log probability of the correct class

E n = −
K∑

k=1

tnk log yn
k

E =
∑

n E
n

Optimise the cost function using gradient descent
(back-propagation of error — backprop)
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Gradient descent

Gradient descent can be used whenever it is possible to
compute the derivatives of the error function E with respect
to the parameters to be optimized W
Basic idea: adjust the weights to move downhill in weight
space
Weight space: space defined by all the trainable parameters
(weights)
Operation of gradient descent:

1 Start with a guess for the weight matrix W (small random
numbers)

2 Update the weights by adjusting the weight matrix in the
direction of −∇WE .

3 Recompute the error, and iterate

The update for weight wki at iteration τ + 1 is:

w τ+1
ki = w τ

ki − η
∂E

∂wki

The parameter η is the learning rate
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Neural Networks vs GMMs

1 Better use of training data. Each Gaussian component of a
GMM is mainly dependent on just a small subset of the data
(divide and conquer); Each hidden unit of an NN is
constrained by a large part of the data.

2 Modelling multiple events. NNs can model multiple events
in the input simultaneously – different sets of hidden units
modelling each event; GMMs assume each data point is
generated by a single mixture component.

3 Input context. NNs can exploit multiple (correlated) frames
of input; GMMs with diagonal covariance matrics require
decorrelated inputs

4 Parallelisation. EM algorithm used to train GMMs is much
easier to parallelise than stochastic gradient descent.
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End of part 1

Next two lectures

Hybrid NN/HMM systems
Tandem features
Deep neural networks
Neural network language models

Reading
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