Search and Decoding

Steve Renals

Automatic Speech Recognition— ASR Lecture 9
12 February 2015
Overview

Today’s lecture

- Search in (large vocabulary) speech recognition
- Viterbi decoding
- Approximate search
The Search Problem in ASR (1)

- Find the most probable word sequence $\hat{W} = w_1, w_2, \ldots, w_M$ given the acoustic observations $X = x_1, x_2, \ldots, x_n$:

$$
\hat{W} = \operatorname*{arg\ max}_{W} P(W|X)
$$

$$
= \operatorname*{arg\ max}_{W} \underbrace{P(X|W)}_{\text{acoustic model}} \underbrace{P(W)}_{\text{language model}}
$$

- Words are composed of state sequences so we may express this criterion by summing over all state sequences $Q = q_1, q_2, \ldots, q_n$:

$$
\hat{W} = \operatorname*{arg\ max}_{W} P(W) \sum_{Q} P(Q|W)P(X|Q)
$$
The Search Problem in ASR (2)

- **Viterbi criterion**: approximate the sum over all state sequences by using the most probable state sequence:

\[
\hat{W} = \arg \max_W P(W) \max_{Q \in Q_W} P(Q | W) P(X | Q)
\]

- \(Q_W\) is the set of all state sequences corresponding to word sequence \(W\)
- The task of the search (or decoding) algorithm is to determine \(\hat{W}\) using the above equation given the acoustic, pronunciation and language models
- In a large vocabulary task evaluating all possible word sequences in infeasible (even using an efficient exact algorithm)
 - Reduce the size of the search space through pruning unlikely hypotheses
 - Eliminate repeated computations
Viterbi Decoding

- Naive exhaustive search: with a vocabulary size V, and a sequence of M words, there are V^M different alternatives to consider!
- Viterbi decoding (forward dynamic programming) is an efficient, recursive algorithm that performs an optimal exhaustive search.
- For HMM-based speech recognition, the Viterbi algorithm is used to find the most probable path through a probabilistically scored time/state lattice.
- Exploits first-order Markov property—only need to keep the most probable path at each state:

$$
\text{max}(P_{ab}f_{bc}, P_{xy}f_{yc})
$$
Set up the problem as a trellis of states and times
Use the Viterbi approximation
At each state-time point keep the single most probable path, discard the rest
The most probable path is the one at the end state at the final time
Typically use log probabilities
Build a network of HMM states from a network of phones from a network of words
Compiling a Recognition Network (2)
The number of words in the utterance is not known.

Word boundaries are not known: V words may potentially start at each frame.

Speech: “the cat ate the canary”
Time Alignment Path

<table>
<thead>
<tr>
<th>States</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word1</td>
<td></td>
</tr>
<tr>
<td>Word2</td>
<td></td>
</tr>
<tr>
<td>Word3</td>
<td></td>
</tr>
<tr>
<td>Word4</td>
<td></td>
</tr>
</tbody>
</table>
Backtrace to Obtain Word Sequence

- Backpointer array keeps track of word sequence for a path:
 \[\text{backpointer[word][wordStartFrame]} = (\text{prevWord}, \text{prevWordStartFrame}) \]
- Backtrace through backpointer array to obtain the word sequence for a path
Incorporating a unigram language model

\[P(W_1) \rightarrow HMM \text{ of } W_1 \]

\[P(W_2) \rightarrow HMM \text{ of } W_2 \]

\[P(W_N) \rightarrow HMM \text{ of } W_N \]

\[\cdots \]
Incorporating a bigram language model

Trigram or longer span models require a word history.
Viterbi decoding performs an exact search in an efficient manner

Exact search is not possible for large vocabulary tasks
- Cross-word triphones need to be handled carefully since the acoustic score of a word-final phone depends on the initial phone of the next word
- Long-span language models (eg trigrams) greatly increase the size of the search space

Solutions:
- Beam search (prune low probability hypotheses)
- Dynamic search structures
- Multipass search (→ two-stage decoding)
- Best-first search (→ stack decoding / A* search)
- Weighted Finite State Transducer (WFST) approaches
Need to build an HMM for each word in the vocabulary
Individual HMM for each word results in phone models duplicated in different words
Share computation by arranging the lexicon as a tree
Beam Search

- **Basic idea:** Prune search paths which are unlikely to succeed.
- Remove nodes in the time-state trellis whose path probability is more than a factor δ less probable than the best path (only consider paths in the beam).
- Both language model and acoustic model can contribute to pruning.
- Pronunciation tree can limit pruning since the language model probabilities are only known at word ends: each internal node can keep a list of words it contributes to.
- Search errors: errors arising due to the fact that the most probable hypothesis was incorrectly pruned.
- Need to balance search errors with speed.
Rather than compute the single best hypothesis the decoder can output alternative hypotheses

N-best list: list of the N most probable hypotheses

Word Graph/Word Lattice:
- Nodes correspond to time (frame)
- Arcs correspond to word hypotheses (with associated acoustic and language model probabilities)

Multipass search using progressively more detailed models
- Eg: use bigram language model on first pass, trigram on second pass
- Transmit information between passes as word graphs
- Later passes rescore word graphs produced by earlier passes
- View recognition search as searching a tree
- Viterbi decoding is breadth-first search — time-synchronous
- Pruning deactivates part of the search tree
- Also possible to use best first search (stack decoding) — time asynchronous
Static and dynamic networks

- Previous approaches constructed the search space *dynamically*: less probable paths are not explored.
- Dynamic search is resource-efficient but results in
 - complex software
 - tight interactions between pruning algorithms and data structures
- Static networks are efficient for smaller vocabularies, but not immediately applicable to large vocabularies
- Efficient static networks would enable
 - Application of network optimization algorithms in advance
 - Decoupling of search network construction and decoding
Weighted Finite State Transducers

- Finite state automaton that transduces an input sequence to an output sequence
- States connected by transitions. Each transition has
 - input label
 - output label
 - weight

```
0 1 2 3
4 5
6
```

```
a:X/0.1  b:Y/0.2  c:Z/0.5  d:W/0.1
e:Y/0.7  f:V/0.3  g:U/0.1
```
WFST Algorithms

Composition Used to combine transducers at different levels. For example if G is a finite state grammar and P is a pronunciation dictionary then D transduces a phone string to any word string, whereas $P \circ G$ transduces a phone string to word strings allowed by the grammar.

Determinisation removes non-determinancy from the network by ensuring that each state has no more than a single output transition for a given input label.

Minimisation transforms a transducer to an equivalent transducer with the fewest possible states and transitions.

Several libraries for WFSTs eg:

WFST-based decoding

- Represent the following components as WFSTs
 - Context-dependent acoustic models (C)
 - Pronunciation dictionary (D)
 - n-gram language model (L)

- The decoding network is defined by their composition: \(C \circ D \circ L \)

- Successively determinize and combine the component transducers, then minimize the final network

- Problem: although the final network may be of manageable size, the construction process may be very memory intensive, particularly with 4-gram language models or vocabularies of over 50,000 words

- Used successfully in several systems
Summary

- Search in speech recognition
- Viterbi decoding
- Connected word recognition
- Incorporating the language model
- Pruning
- Prefix pronunciation trees
- Weighted finite state transducers
- Evaluation
References

- Aubert (2002) - review of decoding techniques
- Mohri et al (2002) - WFSTs applied to speech recognition