
Search and Decoding

Steve Renals

Automatic Speech Recognition— ASR Lecture 9
12 February 2015

ASR Lecture 9 Search and Decoding 1



Overview

Today’s lecture

Search in (large vocabulary) speech recognition

Viterbi decoding

Approximate search

ASR Lecture 9 Search and Decoding 2



The Search Problem in ASR (1)

Find the most probable word sequence Ŵ = w1,w2, . . . ,wM

given the acoustic observations X = x1, x2, . . . , xn:

Ŵ = arg max
W

P(W |X)

= arg max
W

p(X |W )︸ ︷︷ ︸
acoustic model

P(W )︸ ︷︷ ︸
language model

Words are composed of state sequences so we may express
this criterion by summing over all state sequences
Q = q1, q2, . . . , qn:

Ŵ = arg max
W

P(W )
∑
Q

P(Q |W )P(X | Q)

ASR Lecture 9 Search and Decoding 3



The Search Problem in ASR (2)

Viterbi criterion: approximate the sum over all state
sequences by using the most probable state sequence:

Ŵ = arg max
W

P(W ) max
Q∈QW

P(Q |W )P(X | Q)

QW is the set of all state sequences corresponding to word
sequence W

The task of the search (or decoding) algorithm is to determine
Ŵ using the above equation given the acoustic, pronunciation
and language models

In a large vocabulary task evaluating all possible word
sequences in infeasible (even using an efficient exact
algorithm)

Reduce the size of the search space through pruning unlikely
hypotheses
Eliminate repeated computations

ASR Lecture 9 Search and Decoding 4



Viterbi Decoding

Naive exhaustive search: with a vocabulary size V , and a
sequence of M words, there are VM different alternatives to
consider!
Viterbi decoding (forward dynamic programming) is an
efficient, recursive algorithm that performs an optimal
exhaustive search
For HMM-based speech recognition, the Viterbi algorithm is
used to find the most probable path through a probabilistically
scored time/state lattice
Exploits first-order Markov property—only need to keep the
most probable path at each state:

t t+1

b c

y

Pab

Pxy

max(Pab fbc, Pxy fyc)

fbc

fyc

a

x

t-1

ASR Lecture 9 Search and Decoding 5



Time-state trellis

k

i

j

i

j

k

i

j

k

t-1 t t+1
Set up the problem as a trellis of
states and times

Use the Viterbi approximation

At each state-time point keep the
single most probable path, discard
the rest

The most probable path is the one
at the end state at the final time

Typically use log probabilities

ASR Lecture 9 Search and Decoding 6



Compiling a Recognition Network (1)

three

ticket

tickets
two

one

w ah n

t uw

th r iy

Build a network of HMM states from a network of phones from a
network of words

ASR Lecture 9 Search and Decoding 7



Compiling a Recognition Network (2)

x

15
x15 16x

16

17x

17

18x

18

19x

S0

x1

2

3

1

19
observations

time

x 13x

13

12

1412

11x

11

10x

10

9

9

8x

8

S

1

3

2

1

3

2

S

S

S

S

S

S

S

S

7
x72 6x5x4x3xx

51 2 3 4 6

14x

/k
/

/a
e

/
/t

/

ASR Lecture 9 Search and Decoding 8



Connected Word Recognition

The number of words in the utterance is not known
Word boundaries are not known: V words may potentially
start at each frame

1

2

N

HMM of W

HMM of W

HMM of W

(b)  intra/inter word

n−2

n−1

n

(a) intra word

1

X

n=1

n=Nv

T

a
te

c
a
n

a
ry

d
o

g
th

e
c
a
t

speech: “the cat ate the canary”

ASR Lecture 9 Search and Decoding 9



Time Alignment Path

Time

St
at
es

W
or
d1

W
or
d2

W
or
d3

W
or
d4

ASR Lecture 9 Search and Decoding 10



Backtrace to Obtain Word Sequence

Time

St
at
es

W
or
d1

W
or
d2

W
or
d3

W
or
d4

Backpointer array keeps track of word sequence for a path:
backpointer[word][wordStartFrame] = (prevWord, prevWordStartFrame)

Backtrace through backpointer array to obtain the word
sequence for a path

ASR Lecture 9 Search and Decoding 11



Incorporating a unigram language model

2

1

1

2

N

N

P(W  )

HMM of W

HMM of W

HMM of W

P(W  )

P(W  )

ASR Lecture 9 Search and Decoding 12



Incorporating a bigram language model

ae

k

b

n d

uh t

tae

and

but

cat

Bigram
 Language Model

Word Models Word Ends

P(cat | cat)

P(but | cat)P(cat | and)

Trigram or longer span models require a word history.

ASR Lecture 9 Search and Decoding 13



Computational Issues

Viterbi decoding performs an exact search in an efficient
manner

Exact search is not possible for large vocabulary tasks

Cross-word triphones need to be handled carefully since the
acoustic score of a word-final phone depends on the initial
phone of the next word
Long-span language models (eg trigrams) greatly increase the
size of the search space

Solutions:

Beam search (prune low probability hypotheses)
Dynamic search structures
Multipass search (→ two-stage decoding)
Best-first search (→ stack decoding / A∗ search)
Weighted Finite State Transducer (WFST) approaches

ASR Lecture 9 Search and Decoding 14



Sharing Computation: Prefix Pronunciation Tree

Need to build an HMM for each word in the vocabulary

Individual HMM for each word results in phone models
duplicated in different words

Share computation by arranging the lexicon as a tree

D

B

IY

UW

K

OY

OW D

S

Z

AXR

DO

DECOY

DECODE

DECODES

DECODES

DECODER

ASR Lecture 9 Search and Decoding 15



Beam Search

Basic idea: Prune search paths which are unlikely to succeed

Remove nodes in the time-state trellis whose path probability
is more than a factor δ less probable then the best path (only
consider paths in the beam)

Both language model and acoustic model can contribute to
pruning

Pronunciation tree can limit pruning since the language model
probabilities are only known at word ends: each internal node
can keep a list of words it contributes to

Search errors: errors arising due to the fact that the most
probable hypothesis was incorrectly pruned

Need to balance search errors with speed

ASR Lecture 9 Search and Decoding 16



Multipass Search

Rather than compute the single best hypothesis the decoder
can output alternative hypotheses

N-best list: list of the N most probable hypotheses

Word Graph/Word Lattice:

Nodes correspond to time (frame)
Arcs correspond to word hypotheses (with associated acoustic
and language model probabilities)

Multipass search using progressively more detailed models

Eg: use bigram language model on first pass, trigram on
second pass
Transmit information between passes as word graphs
Later passes rescore word graphs produced by earlier passes

ASR Lecture 9 Search and Decoding 17



Word Search Tree

Wd1

WdM

Wd1

Wdj

WdM

View recognition search as searching a tree

Viterbi decoding is breadth-first search — time-synchronous

Pruning deactivates part of the search tree

Also possible to use best first search (stack decoding) — time
asynchronous

ASR Lecture 9 Search and Decoding 18



Static and dynamic networks

Previous approaches constructed the search space
dynamically: less probable paths are not explored.

Dynamic search is resource-efficient but results in

complex software
tight interactions between pruning algorithms and data
structures

Static networks are efficient for smaller vocabularies, but not
immediately applicable to large vocabularies

Efficient static networks would enable

Application of network optimization algorithms in advance
Decoupling of search network construction and decoding

ASR Lecture 9 Search and Decoding 19



Weighted Finite State Transducers

Finite state automaton that transduces an input sequence to
an output sequence

States connected by transitions. Each transition has

input label
output label
weight

0 1 2 3

4 5

6
a:X/0.1 b:Y/0.2 c:Z/0.5 d:W/0.1

e:Y/0.7

f:V/0.3

g:U/0.1

ASR Lecture 9 Search and Decoding 20



WFST Algorithms

Composition Used to combine transducers at different levels. For
example if G is a finite state grammar and P is a
pronunciation dictionary then D transduces a phone
string to any word string, whereas P ◦G transduces a
phone string to word strings allowed by the grammar

Determinisation removes non-determinancy from the network by
ensuring that each state has no more than a single
output transition for a given input label

Minimisation transforms a transducer to an equivalent transducer
with the fewest possible states and transitions

Several libraries for WFSTs eg:

Open FST: http://www.openfst.org/

MIT: http://people.csail.mit.edu/ilh/fst/

AT&T: http://www.research.att.com/~fsmtools/fsm/

ASR Lecture 9 Search and Decoding 21

http://www.openfst.org/
http://people.csail.mit.edu/ilh/fst/
http://www.research.att.com/~fsmtools/fsm/


WFST-based decoding

Represent the following components as WFSTs

Context-dependent acoustic models (C )
Pronunciation dictionary (D)
n-gram language model (L)

The decoding network is defined by their composition:
C ◦ D ◦ L
Successively determinize and combine the component
transducers, then minimize the final network

Problem: although the final network may be of manageable
size, the construction process may be very memory intensive,
particularly with 4-gram language models or vocabularies of
over 50,000 words

Used successfully in several systems

ASR Lecture 9 Search and Decoding 22



Summary

Search in speech recognition

Viterbi decoding

Connected word recognition

Incorporating the language model

Pruning

Prefix pronunciation trees

Weighted finite state transducers

Evaluation

ASR Lecture 9 Search and Decoding 23



References

Aubert (2002) - review of decoding techniques

Mohri et al (2002) - WFSTs applied to speech recognition

Moore et al (2006) - Juicer (example of a WFST-based
decoder)

ASR Lecture 9 Search and Decoding 24


