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Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is

given by
W* = arg max P(W | X)

Applying Bayes' Theorem:
p(X | W)P(W)

p(X)
o< p(X | W)P(W)

P(W [ X) =

W* =argmax p(X | W)  P(W)
W ~— — ——
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HMMs and GMMs

Overview

o Key models and algorithms for HMM acoustic models
Gaussians

GMMs: Gaussian mixture models

HMMs: Hidden Markov models

HMM algorithms

o Likelihood computation (forward algorithm)
o Most probable state sequence (Viterbi algorithm)
o Estimting the parameters (EM algorithm)
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Acoustic Model: Continuous Density HMM

X

Probabilistic finite state automaton
Paramaters A:
o Transition probabilities: ayj = P(S=j | S= k)
o Output probability density function: bj(x) = p(x | S=j)

NB: Some textbooks use Q or g to denote the state variable S.

ASR Lectures 4&5 6




Acoustic Model: Continuous Density HMM HMM Assumptions

X x2 X x* X0 X
Probabilistic finite state automaton
Paramaters A:
o Transition probabilities: ayj = P(S=j | S= k)

o Output probability density function: bj(x) = p(x | S=j)
NB: Some textbooks use @ or g to denote the state variable S.
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HMM OUTPUT DISTRIBUTION
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s(t—1) s(t)

—| s(t+1)

@ @ NB: unfolded version over time

@ Markov process: The probability of a state depends only on the
previous state: P(S(t)|S(t—1),S5(t—2),...,5(1)) = P(5(t)|S(t—1))
A state is conditionally independent of all other states given the previous

state

@ Observation independence: The output observation x(t) depends
only on the state that produced the observation:
PO(DIS(£), S(t—1),..., S(1).x(t 1), ...x(1)) = p(x(£)|S(t))
An acoustic observation x is conditionally independent of all other
observations given the state that generated it
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Output distribution
P(sy | s1) P(s2 | 52) P(s3 | s3)
S S S S
( g )P(s.m,) L JP(ss | SN 2 P55 | s APt | 53)< £ >
p(x | 1) p(x|52) p(x|s3)
X X X

Single multivariate Gaussian with mean p;, covariance matrix X;:
bj(x) = p(x | j) = N(x; pj, Zj)

M-component Gaussian mixture model:

M
bj(x) - p(X J) - Z Cjivw«\’(X; Hjm, 2:jm)

m=1
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Background: cdf Background: pdf

Consider a real valued random variable X

o Cumulative distribution function (cdf) F(x) for X:
F(x)=P(X <x)

@ To obtain the probability of falling in an interval we can do
the following:
Pla< X <b)=P(X <b)—P(X<a)
— F(b) - F(2)
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@ The rate of change of the cdf gives us the probability density
function (pdf), p(x):

px) = LF(x) = F(x)

F(x) = / " p(x)dx

—00

@ p(x) is not the probability that X has value x. But the pdf is
proportional to the probability that X lies in a small interval
centred on x.

o Notation: p for pdf, P for probability
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The Gaussian distribution (univariate) Plot of Gaussian distribution

@ Gaussians have the same shape, with the location controlled

@ The Gaussian (or Normal) distribution is the most common by the mean, and the spread controlled by the variance
(and easily analysed) continuous distribution @ One-dimensional Gaussian with zero mean and unit variance
@ It is also a reasonable model in many situations (the famous (n=0,02=1)
“bell curve™) ot of Gaussian Distiboton
o If a (scalar) variable has a Gaussian distribution, then it has a :

mean=0
variance=1

probability density function with this form:

1 —(x = p)?
2 2
— N ‘0 = 0.25
Pl o) = (i) = e (0 -
@ The Gaussian is described by two parameters: ots
o the mean p (location) o
o the variance o2 (dispersion)
0.05
4 3 2 1 ? 1 2 3 4
Properties of the Gaussian distribution Parameter estimation
1 —(x = p)?
N(x; p,0°) = exp (
V2mo? 20? @ Estimate mean and variance parameters of a Gaussian from
pdfs of Gaussian distributions data X(l)7 X(2)7 e ,X(N)
v @ Use the following as the estimates:
) A= L ix(") (mean)
0zs N
- n=1
% 02 1 N
o5 52 N Z(x(") — )2 (variance)
0.1 n:1
Exercise — maximum likelihood estimation (MLE) The multivariate Gaussian distribution
Consider the log likelihood of a set of N training data points
{xM), ... x(M} being generated by a Gaussian with mean z and o The d-dimensional vector x = (xq,...,Xg)" follows a
variance 02 multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:
L=1Inp({x® ™M1 | 1, 02) 1 ZN: <(X(") —n)? Ino? —In(2 )> 1 1
=lnp({x*,...,x w, o) =—= % —Ino" —In(27 . IR VRS ST
22\ o Pl B) = Gy oo (50— )= )
1 N N
=52 Z(X(") —p)? - > Ino? — > In(27) The pdf is parameterized by the mean vector gt = (u1, . .., pg)’
a n=1 011 cen O1d
By maximising the the log likelihood function with respect to p and the covariance matrix 3 =
show that the maximum likelihood estimate for the mean is indeed ) ] o gdl e T/
the sample mean: @ The 1-dimensional Gaussian is a special case of this pdf
1N o The argument to the exponential 0.5(x — ) T2 (x — p) is
L= ZX(")- referred to as a quadratic form.
n=1
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Covariance matrix Spherical Gaussian

@ The mean vector p is the expectation of x:

p = E[x] S—

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

2= Elx—p)(x— )]
@ X is a d x d symmetric matrix:
ojj = E[(xi — pi) (5 — 1)l = E[Og — 1)) (xi — pi)] = o

@ The sign of the covariance helps to determine the relationship w= 0 D — 10
between two components: 01
o If x; is large when x; is large, then (x; — ;)(x; — ;) will tend

. . o
to be positive; NB: Correlation coefficient pj; = Y (—1<pj<1)
o If x; is small when x; is large, then (x; — i) (x; — p;) will tend VTiiTjj
to be negative.
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Diagonal Covariance Gaussian Full covariance Gaussian

ontour ot of i, x) ‘Contour et ofplx, )

4 I/’ I[ [
il il
”f"'"”%"m.» "'/I/«"'#/'v"' »

l’ A\ -
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Parameter estimation of a multivariate Gaussian Example data

distribution

@ It is possible to show that the mean vector fi and covariance
matrix 3 that maximize the likelihood of the training data are
given by:

5

N
f = Z x(M o

N
$- wa P - )T .
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Maximum likelihood fit to a Gaussian Data in clusters (example 1)

-5
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k-means example: data set k-means exa
A

p=[ 0

k-means is an automatic procedure for clustering unlabelled

data

-1 -05 0

pe =1
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05 1 1.5

17 S =%,=021

Requires a prespecified number of clusters

Clustering algorithm chooses a set of clusters with the

minimum within-cluster variance

Guaranteed to converge (eventually)

Clustering solution is dependent on the initialisation

ASR Lectures 4&5

mple: initialization
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k-means example: iteration 1 (assign points to clusters) k-means example: iteration 1 (recompute centres)

A A
4,13) °@413)
10 10 *
(4.33,10)
@9 °@9)
() ‘78
7.6) 66" 08
5 (10,5) 5 °(45) * (105)
8.4) ‘64 64 K
* (8.75,3.75)
(3.57,3)
‘12 “62)
‘@
0 HIO,O) > 0 (10,0) >
0 5 10 0 5 10
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k-means example: iteration 2 (assign points to clusters) k-means example: iteration 2 (recompute centres)
A A
°(413)
10 10 *
(4.33,10)
°@9)
‘78
©8° 06
5 5 °@45) °(103)
'(5'4) (&4)* (8.2,4.2)
12 G729 sy
an e
0 > 0 (10,0) >
0 0 5 10
k-means example: iteration 3 (assign points to clusters) Mixture model
A
@ A more flexible form of density estimation is made up of a
linear combination of component densities:
10 M
p(x) = p(x|j)P(J)
=t
o This is called a mixture model or a mixture density
5 (105) @ p(x|j): component densities
@ P(j): mixing parameters
o Generative model:
@ Choose a mixture component based on P(j)
0 (100) R Q Gene'rate a data point x from the chosen component using
' : " p(xl))
No changes, so converged
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Gaussian mixture model Component occupation probability

@ The most important mixture model is the Gaussian Mixture
Model (GMM), where the component densities are Gaussians
o Consider a GMM, where each component Gaussian
Nj(x; pj, ;) has mean p; and a spherical covariance X; = ajzl

M M
p(x) =3 PU)P(xIi) = S P IN(x: s 02 1)
=

Jj=1

p(x)
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Parameter estimation

o /fwe knew which mixture component was responsible for a
data point:
o we would be able to assign each point unambiguously to a
mixture component
o and we could estimate the mean for each component Gaussian
as the sample mean (just like k-means clustering)
e and we could estimate the covariance as the sample covariance

@ But we don’t know which mixture component a data point

comes from... . 3, zix(™)
@ Maybe we could use the component occupation probabilities = N;
P(j1x)? 2 2azinllx — Byl
J = Nj
P(j)= %;Zjn: %

o Estimate “soft counts” based on the component occupation
probabilities P(j |x("):

N
Ny =3 P(i X))
n=1

@ We can imagine assigning data points to component j
weighted by the component occupation probability P(j|x{(")

@ So we could imagine estimating the mean, variance and prior
probabilities as:

o S PUIXM)x 5T P(jx(M)x(™)

S SN FIFQ) N
o Sa PO — P 5, PG X)X — gy
J S P |x(m) Ny
~ 1 N
A Pl(My — 4
PU) = ; P X" =
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@ We can apply Bayes' theorem:

Pl — AP

p(x|j)P(J)
S p(x|)P()

@ The posterior probabilities P(j |x) give the probability that
component j was responsible for generating data point x

@ The P(j|x)s are called the component occupation
probabilities (or sometimes called the responsibilities)

@ Since they are posterior probabilities:

M
S PG =1
j=1

GMM Parameter estimation when we know which

component generated the data

@ Define the indicator variable zj, = 1 if component j generated
component x{") (and 0 otherwise)

@ If zj, wasn't hidden then we could count the number of
observed data points generated by j:

N
Nj=2 2n
n=1

@ And estimate the mean, variance and mixing parameters as:

@ Problem! Recall that:

Py = PP

p(x|j)P(J)

s p(x)P()
We need to know p(x|j) and P(j) to estimate the
parameters of p(j|x), and to estimate P(j)....

@ Solution: an iterative algorithm where each iteration has two
parts:

o Compute the component occupation probabilities P(j |x) using
the current estimates of the GMM parameters (means,
variances, mixing parameters) (E-step)

o Computer the GMM parameters using the current estimates of
the component occupation probabilities (M-step)

o Starting from some initialization (e.g. using k-means for the
means) these steps are alternated until convergence

o This is called the EM Algorithm and can be shown to
maximize the likelihood

ASR Lectures 4&5
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Maximum likelihood parameter estimation Example 1 fit using a GMM

E

@ The likelihood of a data set X = {x(l),x(z)7 ..
by:

n=1

o We can regard the negative log likelihood as an error function:

N
—InL = fZIn p(x(™
n=1
N M
= I [ D p(xM1)PG)
n=1 Jj=1

o Considering the derivatives of E with respect to the
parameters, gives expressions like the previous slide

., x(M} is given

(x() H Z p(x1j)P())

n=1 j=1
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Peakily distributed data (Example 2)

¢ . ® ° . .
2 0o 8 o0 o <
1 ° o ot .. :o o o.
o . 1:@: ...o_z. .
S . .‘-.0 .".. e
5 . . .
= M2 = [0 0] 21 =0.11 22 =2l

Fitted with a two component GMM using EM
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-05 0 05 1 1.5 2

Fitted with a two component GMM using EM
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Example 2 fit by a Gaussian

1= o 07T ;=01 X,=2I
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Comments on GMMs Back to HMMs...

o GMMs trained using the EM algorithm are able to self
organize to fit a data set

@ Individual components take responsibility for parts of the data
set (probabilistically)

@ Soft assignment to components not hard assignment — “soft
clustering”

o GMMs scale very well, e.g.: large speech recognition systems
can have 30,000 GMMs, each with 32 components:
sometimes 1 million Gaussian components!! And the
parameters all estimated from (a lot of) data by EM

ASR Lectures 4&5

The three problems of HMMs

Working with HMMs requires the solution of three problems:

@ Likelihood Determine the overall likelihood of an observation
sequence X = (X1,...,X¢,...,X7) being generated by an
HMM.  (NB: x; is used to denote x(*) hereafter)

@ Decoding Given an observation sequence and an HMM,
determine the most probable hidden state sequence

© Training Given an observation sequence and an HMM, learn
the best HMM parameters A = {{aj}, {b;j()}}

ASR Lectures 4&5
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1. Likelihood: The Forward algorithm

o Goal: determine p(X | A)

@ Sum over all possible state sequences s;s; ... st that could
result in the observation sequence X

@ Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

@ Hown many paths calculations in p(X | A)?

~ NxNx--N =N N : number of HMM states
D .
T times T : length of observation

eg. N=3, T=20 -~ 10"
o Computation complexity for multiplication: O(2T NT)
o The Forward algorithm reduces this to O( TN?)

ASR Lectures 4&5

P(s1 | s1) P(s2 | 52) P(s3 | 53)
S S S S
< o )Pmm) L JPss | SN 2 P55 | s APt | s;)( £ >
p(x | s1) p(x| s2) p(x | s3)
X X X

Output distribution:
@ Single multivariate Gaussian with mean p;, covariance matrix
Eji
bj(x) = p(x | S=j) = N(x; p;, %)

@ M-component Gaussian mixture model:

M
bi(x) = p(x [ S=J) =D mN (% thjm, Zjm)
=1
ASR Lectures 4&5 m 49

states

trellis

3 5 6 7 time
X4 X, X, X, X5 Xg X, observations
P(X, path;|A) = P(X|path;, A)P(path;|A)
= P(X|sos151515252535354, A) P(05151515252535354|\)
= b1(x1)b1(x2)b1(x3)b2(xa)b2(x5)b3(x6)b3(x7)a01a11a11a12822823 333334
P(X|A) = > P(X,pathj|A) =~ max P(X, path;|A)
{path; }

forward(backward) algorithm Viterbi algorithm
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Recursive algorithms on HMMs

Visualize the problem as a state-time trellis

t-1 t t+l

ASR Lectures 4&5 53



1. Likelihood: The Forward algorithm 1. Likelihood: The Forward recursion

o Goal: determine p(X | A) o Initialization

@ Sum over all possible state sequences s;s; ... st that could

. . ao(sr)
result in the observation sequence X

=1
_ ao(j)=0 ifj#s
@ Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption) @ Recursion
o Forward probability, a(j): the probability of observing the N
observation sequence Xj ...X; and being in state j at time t: a(j) = Zatil( i)ajibj(xt) 1<j<N,1<t<T
i=1

ar(j) = plx, ..., xe, S(t)=j | A)

@ Termination
N
p(X | A) =ar(se) =Y ar(i)ae
i=1

s;: initial state, sg: final state
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1. Likelihood: Forward Recursion Viterbi approximation

o Instead of summing over all possible state sequences, just

N
ae(J) = pxa,.oxe, S(t)=J | A) = Zat_l( 1)aijbj(xe) consider the most likely

i=1
@ Achieve this by changing the summation to a maximisation in
t+1 the recursion:

t-1

Vi(j) = max Ve1(7)ajbj(xe)

o Changing the recursion in this way gives the likelihood of the
most probable path

@ We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path

(X[_l(j )

t
(i)
)
()

oy (k)
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Viterbi Recursion Viterbi Recursion
Ve(j) = max Vi_1( i )ajibj(xt) Backpointers to the previous state on the most probable path
i

Likelihood of the most probable path
t—1 t t+1

Ve (k)
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2. Decoding: The Viterbi algorithm Viterbi Backtrace

@ Initialization

Vo(i) =1
Vo(j)=0 if j#i
bto(j) =0

@ Recursion
. N .
Ve(j) = max Ve1(i)aijbj(xc)
. N .
bte(j) = argmax Vi1 (7)ajjbj(xt)
@ Termination
P* = VT(SE) = ml\allx VT( i)a,-E
i=

N .
sT = btr(qe) = arg max Vr(i)aie
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3. Training: Forward-Backward algorithm

o Goal: Efficiently estimate the parameters of an HMM X from
an observation sequence

@ Assume single Gaussian output probability distribution

bj(x) = p(x | j) = N(x: pj, ;)

o Parameters A:
o Transition probabilities aj:

Za,‘j:l
J

Backtrace to find the state sequence of the most probable path

t—1 t t+1
bt, (i )=j

th.] (k )=l

ASR Lectures 4&5 61

Viterbi Training

o If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state

@ A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding

@ Maximum likelihood estimate of aj;, if C(i — j) is the count
of transitions from /i to j

o C(i—=))

T Cli— k)

o Likewise if Z; is the set of observed acoustic feature vectors
assigned to state j, we can use the standard maximum
likelihood estimates for the mean and the covariance:

ZXEZ,' X

3

o Gaussian parameters for state j: Hj = T
mean vector p;; covariance matrix X; |2
ii: )T
o e (= i)x— i)
i = :
1Zj|

EM Algorithm Backward probabilities

I
o Viterbi training is an approximation—we would like to
consider all possible paths
@ In this case rather than having a hard state-time alignment we
estimate a probability
o State occupation probability: The probability v.(j) of
occupying state j at time t given the sequence of
observations.
Compare with component occupation probability in a GMM
@ We can use this for an iterative algorithm for HMM training:
the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm’)
@ Each iteration has two steps:
E-step estimate the state occupation probabilities
(Expectation)
M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)

ASR Lectures 4&5

o To estimate the state occupation probabilities it is useful to
define (recursively) another set of probabilities—the Backward
probabilities

Be(J) = p(Xe+1, .-+, x7 | S(8)=J,A)
The probability of future observations given a the HMM s in
state j at time t
@ These can be recursively computed (going backwards in time)
e Initialisation
Br(i)=aE

o Recursion

N
Be(i) = Zaijbj(xrﬂ)ﬁtﬂ(j) fort=T-1,...,1

=
o Termination

P(X | X) = fo(1) =D aybi(x1)(j) = ar(se)

Jj=1
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Backward Recursion State Occupation Probability

@ The state occupation probability ~:(j) is the probability of
occupying state j at time t given the sequence of observations

N
Be(i) = p(Xex1, .- xT | S(t)=Jj,A) = Z abj(xe41)Bes1(J) @ Express in terms of the forward and backward probabilities:
j= . . 1 . .
= 1(j) = P(S(E)=J | X, A) = ——ae(j)Be(J)
t-1 t t+1 ar(se)
recalling that p(X|\) = at(sg)
@ Since
Brili) ar(J)Be(J) = p(xa,. .., xe, S(£)=j | A)

P(Xt+1,-~~7XT ‘ S(t):ja}\)
= p(X1, ., Xt Xeq 1, -+ XT, S(E) =4 | A)
Buij) =p(X,5(t)=j | A)

. P(X,S5(t)=Jj | A)
P(S(t)=J | X,A) =
Bni(k) (S()=J [ X, A) p(X]\)

Re-estimation of Gaussian parameters Re-estimation of transition probabilities

o Similarly to the state occupation probability, we can estimate
&( i, j), the probability of being in i at time t and j at
t + 1, given the observations:

@ The sum of state occupation probabilities through time for a
state, may be regarded as a “soft” count

@ We can use this “soft” alignment to re-estimate the HMM &(i,j)=P(S(t)=1i,S(t+1)=j | X,A)
parameters: _P(S(t)=1i,5(t+1)=j,X[|A)
o - p(XIA)
_ x . .
py = e el )xe _ e )agy(xer1)Bern())
D=1 7e(d) B ar(se)
T . - AT
. _ x: — ;) (x — fy;
Y= 2o 7ed)(xe = 4)( ) @ We can use this to re-estimate the transition probabilities

Zz—zl”/t(j)
5 = L&)
LY Y&l k)
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Pulling it all together Extension to a corpus of utterances

o lterative estimation of HMM parameters using the EM
algorithm. At each iteration @ We usually train from a large corpus of R utterances
E step For all time-state pairs

© Recursively compute the forward probabilities
a(j) and backward probabilities ()

o If x{ is the tth frame of the rth utterance X" then we can
compute the probabilities af(j), S7(J ), vi(J) and &L(7, j)

@ Compute the state occupation probabilities as before
Ye(4) and &:(i, J) @ The re-estimates are as before, except we must sum over the
M step Based on the estimated state occupation R utterances, eg:
probabilities re-estimate the HMM parameters:
i i Y U)x
mean vectors p;, covariance matrices X; and f, — Zer=12at=17t\J )Xy
.. e ) R T -
transition probabilities aj; Yo e i)

@ The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm
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Extension to Gaussian mixture model (GMM)

@ The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

@ In this case an M-component Gaussian mixture model is an
appropriate density function:

M
bi(x) = p(x | J) = GimN (%; tjm: jm)
m=1
Given enough components, this family of functions can model
any distribution.

@ Train using the EM algorithm, in which the component
estimation probabilities are estimated in the E-step

ASR Lectures 4&5 72

Doing the computation

The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

This can cause floating point underflow problems

In practice computations are performed in the log domain (in
which multiplies become adds)

Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians
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A note on HMM emission probabilities

al 1 a22 (l33

aOl a12 a’j4

b, (x%bz(x b3(x¢/\

emission pdfs

a23

Emission prob.
continuous density | GMM, NN/DNN
discrete probability | VQ
continuous density | tied mixture

Continuous (density) HMM
Discrete (probability) HMM
Semi-continuous HMM
(tied-mixture HMM)
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EM training of HMM/GMM

@ Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities v¢(j, m): the probability of
occupying mixture component m of state j at time t

@ We can thus re-estimate the mean of mixture component m
of state j as follows

T .
o thl "/t(J 5 m)Xt
S e
thl ’Yt(J ) m)
And likewise for the covariance matrices (mixture models
often use diagonal covariance matrices)

@ The mixture coefficients are re-estimated in a similar way to
transition probabilities:

ﬂjm

_Xlawliam)
S (i 0)
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A note on HMM topology

585 bahas W

left-to-right model  parallel path left-to—right model  ergodic model
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left-to-right HMM with 3 ~ 5 states
ergodic HMM

Speech recognition:
Speaker recognition:
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Summary: HMMs

@ HMMs provide a generative model for statistical speech
recognition
o Three key problems
@ Computing the overall likelihood: the Forward algorithm
@ Decoding the most likely state sequence: the Viterbi algorithm
@ Estimating the most likely parameters: the EM
(Forward-Backward) algorithm
@ Solutions to these problems are tractable due to the two key
HMM assumptions
@ Conditional independence of observations given the current
state
@ Markov assumption on the states
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