Introduction to Speech Recognition

Steve Renals & Hiroshi Shimodaira

Automatic Speech Recognition— ASR Lecture 1 12 January 2015

Automatic Speech Recognition — ASR

Course details

- About 15 lectures, also some tutorials starting week 2 or 3
- Lab coursework: build ASR system using HTK (15%)
- Literature review coursework (15%)
- Exam in April or May (worth 70%)
- Books and papers:
 - Jurafsky & Martin (2008), Speech and Language Processing, Pearson Education (2nd edition). (J&M)
 - Some review and tutorial articles, readings for specific topics
- If you haven't taken Speech Processing (SP)...
 - Read J&M, chapter 7 (Phonetics)
 - Look at Simon King's SP course material (mail simon.king@ed.ac.uk) to get access

http://www.inf.ed.ac.uk/teaching/courses/asr/

Automatic Speech Recognition — ASR

Course content

- Introduction to statistical speech recognition
- The basics
 - Speech signal processing
 - Acoustic modelling with HMMs
 - Pronunciations and language models
 - Search
- Advanced topics:
 - Adaptation
 - (Deep) neural networks
 - Discriminative training

Overview

Introduction to Speech Recognition

Today

- Overview
- Statistical Speech Recognition
- Hidden Markov Models (HMMs)

What is ASR?

Speech-to-text transcription

- Transform recorded audio into a sequence of words
- Just the words, no meaning....
- But: "Will the new display recognise speech?" or "Will the nudist play wreck a nice beach?"
- Speaker diarization: Who spoke when?
- Speech recognition: what did they say?
- Paralinguistic aspects: how did they say it? (timing, intonation, voice quality)

Why is speech recognition difficult?

Variability in speech recognition

Several sources of variation

- Size Number of word types in vocabulary, perplexity
- Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics and accent
- Acoustic environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)
 - Style Continuously spoken or isolated? Planned monologue or spontaneous conversation?

Spontaneous vs. Planned

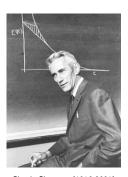
Oh [laughter] he he used to be pretty crazy but I think now that he's kind of gotten his act together now that he's mentally uh sharp he he doesn't go in for that anymore.

Dictated Imitated Spontaneous

Linguistic Knowledge or Machine Learning?

- Intense effort needed to derive and encode linguistic rules that cover all the language
- Very difficult to take account of the variability of spoken language with such approaches
- Data-driven machine learning: Construct simple models of speech which can be learned from large amounts of data (thousands of hours of speech recordings)

Statistical Speech Recognition



Thomas Bayes (1701-1761)

To The Integration (1000).

AA Markov (1856-1922)

Claude Shannon (1916-2001)

Fundamental Equation of Statistical Speech Recognition

If ${\bf X}$ is the sequence of acoustic feature vectors (observations) and ${\bf W}$ denotes a word sequence, the most likely word sequence ${\bf W}^*$ is given by

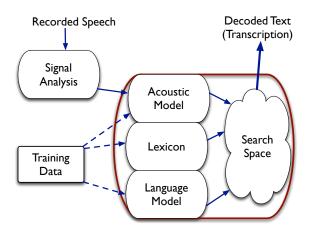
$$\mathbf{W}^* = \arg\max_{\mathbf{W}} P(\mathbf{W} \mid \mathbf{X})$$

Applying Bayes' Theorem:

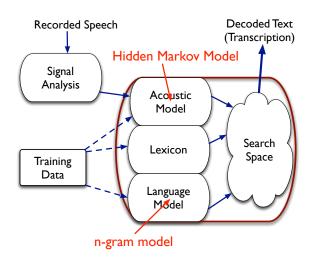
$$P(\mathbf{W} \mid \mathbf{X}) = \frac{p(\mathbf{X} \mid \mathbf{W})P(\mathbf{W})}{p(\mathbf{X})}$$

$$\propto p(\mathbf{X} \mid \mathbf{W})P(\mathbf{W})$$

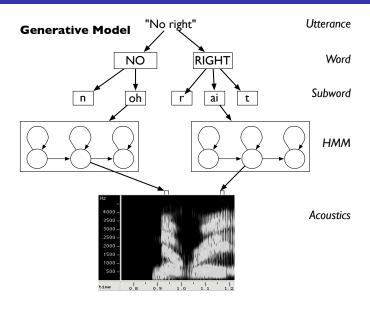
$$\mathbf{W}^* = \arg \max_{\mathbf{W}} \underbrace{p(\mathbf{X} \mid \mathbf{W})}_{\text{Acoustic}} \underbrace{P(\mathbf{W})}_{\text{Language}}$$


$$\mod e$$

Statistical speech recognition


Statistical models offer a statistical "guarantee" — see the licence conditions of the best known automatic dictation system, for example:

Licensee understands that speech recognition is a statistical process and that recognition errors are inherent in the process. Licensee acknowledges that it is licensee's responsibility to correct recognition errors before using the results of the recognition.

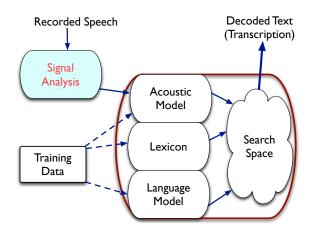

Statistical Speech Recognition

Statistical Speech Recognition

Hierarchical modelling of speech

Data

- The statistical framework is based on learning from data
- Standard corpora with agreed evaluation protocols very important for the development of the ASR field
- TIMIT corpus (1986)—first widely used corpus, still in use
 - Utterances from 630 North American speakers
 - Phonetically transcribed, time-aligned
 - Standard training and test sets, agreed evaluation metric (phone error rate)
- Many standard corpora released since TIMIT: DARPA
 Resource Management, read newspaper text (eg Wall St
 Journal), human-computer dialogues (eg ATIS), broadcast
 news (eg Hub4), conversational telephone speech (eg
 Switchboard), multiparty meetings (eg AMI)
- Corpora have real value when closely linked to evaluation benchmark tests (with new test data from the same domain)


Evaluation

- How accurate is a speech recognizer?
- Use dynamic programming to align the ASR output with a reference transcription
- Three type of error: insertion, deletion, substitution
- Word error rate (WER) sums the three types of error. If there are N words in the reference transcript, and the ASR output has S substitutions, D deletions and I insertions, then:

WER =
$$100 \cdot \frac{S + D + I}{N}$$
% Accuracy = $100 - WER$ %

- Speech recognition evaluations: common training and development data, release of new test sets on which different systems may be evaluated using word error rate
 - NIST evaluations enabled an objective assessment of ASR research, leading to consistent improvements in accuracy
 - May have encouraged incremental approaches at the cost of subduing innovation ("Towards increasing speech recognition error rates")

Next Lecture

Reading

- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): Chapter 9 to end of sec 9.3.
- Renals and Hain (2010). "Speech Recognition",
 Computational Linguistics and Natural Language Processing Handbook, Clark, Fox and Lappin (eds.), Blackwells. (on website)