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Neural networks for speech recognition

Introduction to Neural Networks

Training feed-forward networks

Hybrid neural network / HM M acoustic models
Neural network features — Tandem, posteriorgrams

Deep neural network acoustic models

Neural network language models
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n-gram language modelling

@ The problem: estimate the probability of a sequence of T
words, P(wy,wa,...,wr) = P(w")
Decompose as conditional probabilities

)—HPWt‘W1

@ n-gram approximation: only consider (n — 1) words of context:

Pwe [ wi™) ~ Pwe | Wil )

Many possible word sequences — consider vocab size
|V| = 100000 with a 4-gram
o 100000* possible 4-grams, i.e. 102 parameters
@ Most n-grams not in training data — zero-probability problem
@ Smooth n-gram model with models with smaller context size
(interpolation)
@ State of the art — modified Kneser-Ney smoothing
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Problems with n-grams

@ Curse of dimensionality — model size (number of parameters)
increases exponentially with context size

@ Probability estimation in a high-dimensional discrete smooth
— not smooth, small changes in discrete context may result
in large changes in probability estimate

© Does not take word similarity into account
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Distributed representation for language modelling

@ Each word is associated with a learned distributed
representation (feature vector)

@ Use a neural network to estimate the conditional probability of
the next word given the the distributed representations of the
context words

@ Learn the distributed representations and the weights of the
conditional probability estimate jointly by maximising the log
likelihood of the training data

e Similar words (distributionally) will have similar feature vectors
— small change in feature vector will result in small change in
probability estimate (since the NN is a smooth function)
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Neural Probabilistic Language Model

i-th output = P(wy = i| context)
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Neural Probabilistic Language Model

@ Train using stochastic gradient ascent to maximise log
likelihood

@ Number of free parameters (weights) scales

e Linearly with vocabulary size
o Linearly with context size

@ Can be (linearly) interpolated with n-gram model

@ Perplexity results on AP News (14M words training).

|V| =18k
model ‘ n ‘ perplexity
NPLM(100,60) | 6 109
n-gram (KN) 3 127
n-gram (KN) 4 119
n-gram (KN) 5 117
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NPLM — Shortlists

e Majority of the weights (hence majority of the computation) is
in the output layer

@ Reduce computation by only including the s most frequent
words at the output — the shortlist (S) (full vocabulary still
used for context)

@ Use an n-gram model to estimate probabilities of words not in
the shortlist

@ Neural network thus redistributes probability for the words in
the shortlist

Ps(he) =) P(wlh)

weS
o PNN(Wt|ht)PS(ht) |th S S
P(welhe) = { P (we|he) else

@ In a |V| =50k task a 1024 word shortlist covers 89% of
4-grams, 4096 words covers 97%
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NPLM — ASR results

Speech recognition results on Switchboard
7M / 12M / 27M words in domain data.
500M words background data (broadcast news)
Vocab size |V| = b1k, Shortlist size |S| = 12k

WER/%
in-domain words | 7M | 12M | 27M
KN (in-domain) | 25.3 | 23.0 | 20.0
NN (in-domain) | 24.5 | 22.2 | 19.1
KN (+b/g) | 24.1 | 22.3 | 19.3
NN (+b/g) | 23.7 | 21.8 | 18.9
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Recurrent Neural Network (RNN) LM

@ Rather than fixed input context, recurrently connected hidden
units provide memory

@ Model learns “how to remember” from the data

@ Recurrent hidden layer allows clustering of variable length
histories
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RNN training: back-propagation through time
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Factorised RNN LM
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@ Y Bengio et al (2006), Neural probabilistic language models
(sections 6.1, 6.2, 6.3, 6.7, 6.8), Studies in Fuzziness and Soft
Computing Volume 194, Springer, chapter 6.

e T Mikolov et al (2011), Extensions of recurrent neural
network language model, Proc IEEE ICASSP-2011
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