Modelling speech with HMMs

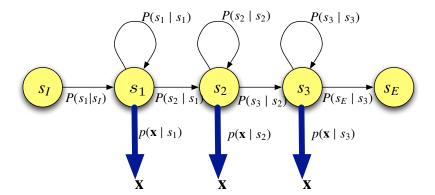
Steve Renals

Automatic Speech Recognition ASR Lectures 6&7 30 January, 3 February 2014

Phone models

- Modelling phones with HMMs
- The need to model phonetic context
- Triphone models
- Smoothing—interpolation and backing-off
- Parameter sharing—tied mixtures, generalised triphones, state clustering
- Choosing which states to share—phonetic decision trees

Recap: Continuous Density HMM

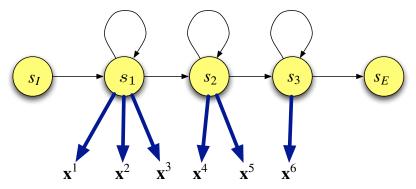


Probabilistic finite state automaton

Paramaters λ :

- Transition probabilities: $a_{kj} = P(s_j | s_k)$
- Output probability density function: $b_j(\mathbf{x}) = p(\mathbf{x} \mid s_j)$

Recap: Continuous Density HMM



Probabilistic finite state automaton

Paramaters λ :

- Transition probabilities: $a_{kj} = P(s_j | s_k)$
- Output probability density function: $b_j(\mathbf{x}) = p(\mathbf{x} \mid s_j)$

Hidden Markov Models for ASR: The Pioneers

Lloyd Welch

Jim Baker

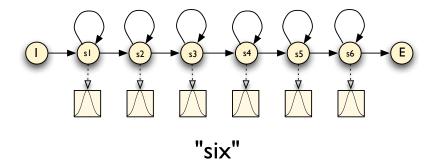
Steve Young

<ロ> (四) (四) (三) (三) (三)

Kai-Fu Lee

Fred Jelinek

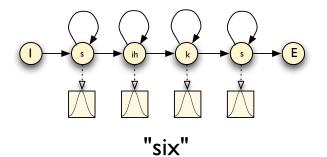
Whole word models



Э

・ 回 と ・ ヨ と ・ ヨ と

One state per phone models

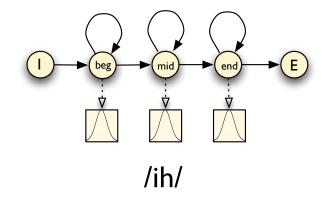


▲ 同 ▶ → 三 ▶

< ≣ >

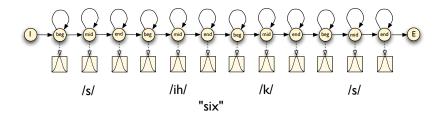
Э

Three-state phone models



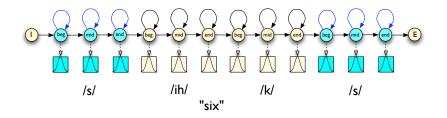
Э

Word model made of phone models

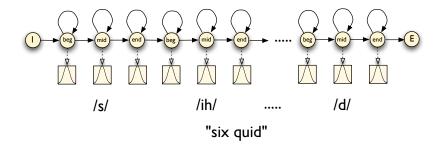


э

Word model made of phone models



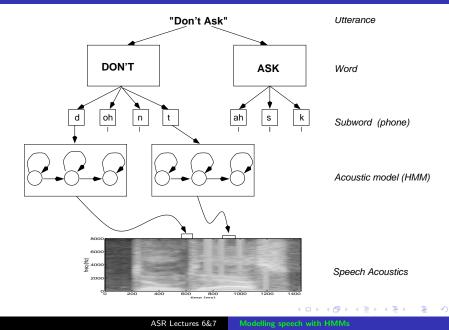
Word sequence models



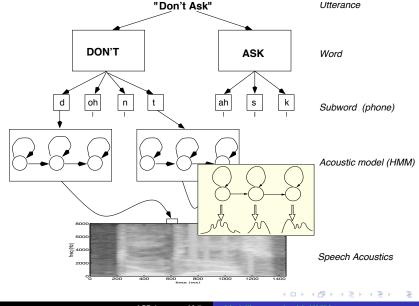
문 🛌 문

A.

Hierarchical Modelling in Speech Recognition



Hierarchical Modelling in Speech Recognition



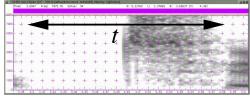
• Context The acoustic phonetic context of a speech unit has an effect on its acoustic realization

글 🕨 🔸 글 🕨

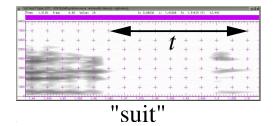
- Context The acoustic phonetic context of a speech unit has an effect on its acoustic realization
- Coarticulation the place of articulation for one speech sound depends on a neighbouring speech sound.

- Context The acoustic phonetic context of a speech unit has an effect on its acoustic realization
- Coarticulation the place of articulation for one speech sound depends on a neighbouring speech sound.
- Consider /n/ in ten and tenth
 - dental in ten
 - alveolar in tenth

Phonetic Context Example



"tube"



Э

・ロン ・回と ・ヨン・

- Subword units Individual phone units need to deal with a lot of variability
 - Use longer units that incorporate context, eg: diphones, demisyllables, syllables
 - Use multiple models for each: context-dependent phone models
 - Context-dependent phones are termed allophones of the parent phone

< 🗇 🕨

(4) (3) (4) (3) (4)

- Subword units Individual phone units need to deal with a lot of variability
 - Use longer units that incorporate context, eg: diphones, demisyllables, syllables
 - Use multiple models for each: context-dependent phone models
 - Context-dependent phones are termed allophones of the parent phone
- Pronunciations
 - "did you" d ih jh y ah
 - "around this" ix r aw n ih s

★ 문 ► ★ 문 ►

- Context-dependent models are more specific than context-independent models
- Increase the detail of modelling by extending the state space

 but by defining multiple context dependent models, rather than more complex context independent models
- Divide and conquer: as more context-dependent models are defined, each one becomes responsible for a smaller region of the acoustic-phonetic space
- Let the data tell us how many contexts to model

Context-dependent phone models

• Triphones Each phone has a unique model for each left and right context. Represent a phone x with left context 1 and right context r as 1-x+r

Context-dependent phone models

- Triphones Each phone has a unique model for each left and right context. Represent a phone x with left context 1 and right context r as 1-x+r
- Word-internal triphones Only take account of context within words, so "don't ask" is represented by: sil d+oh d-oh+n oh-n+t n-t ah+s ah-s+k s-k sil Word internal triphones result in far fewer models than cross-word models, and enable the subword sequence for a word to be known independent of the neighbouring words. But: context is not well-modelled at word boundaries.

Context-dependent phone models

- Triphones Each phone has a unique model for each left and right context. Represent a phone x with left context 1 and right context r as 1-x+r
- Word-internal triphones Only take account of context within words, so "don't ask" is represented by:

sil d+oh d-oh+n oh-n+t n-t ah+s ah-s+k s-k sil Word internal triphones result in far fewer models than cross-word models, and enable the subword sequence for a word to be known independent of the neighbouring words. But: context is not well-modelled at word boundaries.

 Cross-word triphones "don't ask" is represented by: sil sil-d+oh d-oh+n oh-n+t n-t+ah t-ah+s ah-s+k s-k+sil sil Note that triphone context extends across words (eg unit n-t+ah)

How many triphones are there? Consider a 40 phone system.
 40³ = 64 000 possible triphones. In a cross-word system maybe 50 000 can occur

- E + - E +

Triphone models

- How many triphones are there? Consider a 40 phone system.
 40³ = 64 000 possible triphones. In a cross-word system maybe 50 000 can occur
- Number of parameters:
 - 50 000 three-state HMMs, with 10 component Gaussian mixtures per state: 1.5M Gaussians
 - 39-dimension feature vectors (12 MFCCs + energy), deltas and accelerations
 - Assuming diagonal Gaussians: about 790 parameters/state
 - Total about 118 million parameters!

- How many triphones are there? Consider a 40 phone system.
 40³ = 64 000 possible triphones. In a cross-word system maybe 50 000 can occur
- Number of parameters:
 - 50 000 three-state HMMs, with 10 component Gaussian mixtures per state: 1.5M Gaussians
 - 39-dimension feature vectors (12 MFCCs + energy), deltas and accelerations
 - Assuming diagonal Gaussians: about 790 parameters/state
 - Total about 118 million parameters!
- We would need a very large amount of training data to train such a system
 - to enable robust estimation of all parameters
 - to ensure that all possible triphones are observed (more than once) in the training data

・ロン ・回 と ・ ヨ と ・ ヨ と

• Smoothing – combine less-specific and more-specific models

- Smoothing combine less-specific and more-specific models
- Parameter Sharing different contexts share models

- Smoothing combine less-specific and more-specific models
- Parameter Sharing different contexts share models
 - Bottom-up start with all possible contexts, then merge

- Smoothing combine less-specific and more-specific models
- Parameter Sharing different contexts share models
 - Bottom-up start with all possible contexts, then merge
 - Top-down start with a single context, then split

- Smoothing combine less-specific and more-specific models
- Parameter Sharing different contexts share models
 - Bottom-up start with all possible contexts, then merge
 - Top-down start with a single context, then split
- All approaches are data driven

• Basic idea Use less-specific models when there is not enough data to train a more specific one

< 臣 > < 臣 >

A ₽

- Basic idea Use less-specific models when there is not enough data to train a more specific one
- For example if a triphone is not observed (or only a few examples are observed) use a biphone model:
 sh-iy+1 → iy+1

A B K A B K

- Basic idea Use less-specific models when there is not enough data to train a more specific one
- For example if a triphone is not observed (or only a few examples are observed) use a biphone model:
 sh-iy+1 → iy+1
- If only a few biphone occurrences use a monophone: $\mathtt{sh-iy+l} \to \mathtt{iy+l} \to \mathtt{iy}$

(4) (5) (4) (5) (4)

- Basic idea Use less-specific models when there is not enough data to train a more specific one
- For example if a triphone is not observed (or only a few examples are observed) use a biphone model:
 sh-iy+1 → iy+1
- If only a few biphone occurrences use a monophone: $\mathtt{sh-iy+l} \to \mathtt{iy+l} \to \mathtt{iy}$
- Use a minimum training example count to determine whether a triphone should be modelled or backed-off to a biphone (likewise for biphones)

個 と く ヨ と く ヨ と …

- Basic idea Use less-specific models when there is not enough data to train a more specific one
- For example if a triphone is not observed (or only a few examples are observed) use a biphone model:
 sh-iy+1 → iy+1
- If only a few biphone occurrences use a monophone: $\mathtt{sh-iy+l} \to \mathtt{iy+l} \to \mathtt{iy}$
- Use a minimum training example count to determine whether a triphone should be modelled or backed-off to a biphone (likewise for biphones)
- Ensures that each model is well trained

→ Ξ → < Ξ →</p>

Smoothing: Backing off

- Basic idea Use less-specific models when there is not enough data to train a more specific one
- For example if a triphone is not observed (or only a few examples are observed) use a biphone model:
 sh-iy+1 → iy+1
- If only a few biphone occurrences use a monophone: $\mathtt{sh-iy+l} \to \mathtt{iy+l} \to \mathtt{iy}$
- Use a minimum training example count to determine whether a triphone should be modelled or backed-off to a biphone (likewise for biphones)
- Ensures that each model is well trained
- But training data is sparse (especially when cross-word triphones are used) so relatively few specific triphone models

・日・ ・ ヨ・ ・ ヨ・

Basic idea Combine less-specific models with more specific models

< 臣 > < 臣 >

- Basic idea Combine less-specific models with more specific models
- Interpolate the parameters of a triphone λ^{tri} with those of a biphone λ^{bi} and a monophone λ^{mono} :

$$\hat{\lambda}^{tri} = \alpha_3 \lambda^{tri} + \alpha_2 \lambda^{bi} + \alpha_1 \lambda^{mono}$$

- Basic idea Combine less-specific models with more specific models
- Interpolate the parameters of a triphone λ^{tri} with those of a biphone λ^{bi} and a monophone λ^{mono} :

$$\hat{\lambda}^{tri} = \alpha_3 \lambda^{tri} + \alpha_2 \lambda^{bi} + \alpha_1 \lambda^{mono}$$

• Estimate the interpolation parameters $\boldsymbol{\alpha}$ using deleted interpolation

- Basic idea Combine less-specific models with more specific models
- Interpolate the parameters of a triphone λ^{tri} with those of a biphone λ^{bi} and a monophone λ^{mono} :

$$\hat{\lambda}^{tri} = \alpha_3 \lambda^{tri} + \alpha_2 \lambda^{bi} + \alpha_1 \lambda^{mono}$$

- Estimate the interpolation parameters $\boldsymbol{\alpha}$ using deleted interpolation
- This enables more triphone models to be estimated, but adds robustness by sharing training data from other contexts (through the biphone and monophone models)

• Basic idea Explicitly share models or parameters between different contexts

æ

★ 문 ► ★ 문 ►

A ₽

- Basic idea Explicitly share models or parameters between different contexts
 - enables training data to be shared between the models

- Basic idea Explicitly share models or parameters between different contexts
 - enables training data to be shared between the models
 - enables models to share parameters

3 × 4 3 ×

- Basic idea Explicitly share models or parameters between different contexts
 - enables training data to be shared between the models
 - enables models to share parameters
- Sharing can take place at different levels

- Basic idea Explicitly share models or parameters between different contexts
 - enables training data to be shared between the models
 - enables models to share parameters
- Sharing can take place at different levels
- Sharing Gaussians: all distributions share the same set of Gaussians but have different mixture weights (tied mixtures)

- Basic idea Explicitly share models or parameters between different contexts
 - enables training data to be shared between the models
 - enables models to share parameters
- Sharing can take place at different levels
- Sharing Gaussians: all distributions share the same set of Gaussians but have different mixture weights (tied mixtures)
- Sharing states: allow different models to share the same states (state clustering)

- Basic idea Explicitly share models or parameters between different contexts
 - enables training data to be shared between the models
 - enables models to share parameters
- Sharing can take place at different levels
- Sharing Gaussians: all distributions share the same set of Gaussians but have different mixture weights (tied mixtures)
- Sharing states: allow different models to share the same states (state clustering)
- Sharing models: merge those context-dependent models that are the most similar (generalised triphones)

A B K A B K

- Basic idea Explicitly share models or parameters between different contexts
 - enables training data to be shared between the models
 - enables models to share parameters
- Sharing can take place at different levels
- Sharing Gaussians: all distributions share the same set of Gaussians but have different mixture weights (tied mixtures)
- Sharing states: allow different models to share the same states (state clustering)
- Sharing models: merge those context-dependent models that are the most similar (generalised triphones)

A B K A B K

• Basic idea all states share the same Gaussians

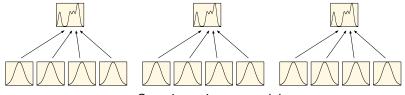
- ∢ ≣ ▶

- Basic idea all states share the same Gaussians
- Have a pool of *G* Gaussians shared between all HMM states—each state has a *G*-component GMM output distribution

- Basic idea all states share the same Gaussians
- Have a pool of *G* Gaussians shared between all HMM states—each state has a *G*-component GMM output distribution
- Therefore the mean vectors and covariance matrices are shared between states

- Basic idea all states share the same Gaussians
- Have a pool of *G* Gaussians shared between all HMM states—each state has a *G*-component GMM output distribution
- Therefore the mean vectors and covariance matrices are shared between states
- The mixture component weights are specific to each state

Tied Mixture Model

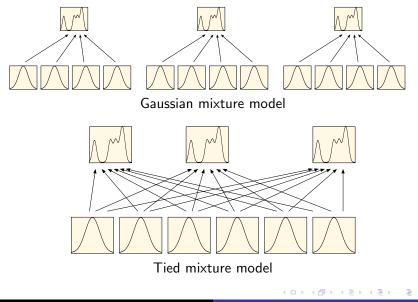


Gaussian mixture model

イロン 不同と 不同と 不同と

æ

Tied Mixture Model



- Basic idea all states share the same Gaussians
- Have a pool of *G* Gaussians shared between all HMM states—each state has a *G*-component GMM output distribution
- Therefore the mean vectors and covariance matrices are shared between states
- The mixture component weights are specific to each state
- In context-dependent models, the mixture component weights may be smoothed using interpolation

- Basic idea all states share the same Gaussians
- Have a pool of *G* Gaussians shared between all HMM states—each state has a *G*-component GMM output distribution
- Therefore the mean vectors and covariance matrices are shared between states
- The mixture component weights are specific to each state
- In context-dependent models, the mixture component weights may be smoothed using interpolation
- Tied mixture systems work well due to the large amount of parameter sharing and smoothing of the weights

- Basic idea all states share the same Gaussians
- Have a pool of *G* Gaussians shared between all HMM states—each state has a *G*-component GMM output distribution
- Therefore the mean vectors and covariance matrices are shared between states
- The mixture component weights are specific to each state
- In context-dependent models, the mixture component weights may be smoothed using interpolation
- Tied mixture systems work well due to the large amount of parameter sharing and smoothing of the weights
- But we can do better (state clustering)!

- Basic idea all states share the same Gaussians
- Have a pool of *G* Gaussians shared between all HMM states—each state has a *G*-component GMM output distribution
- Therefore the mean vectors and covariance matrices are shared between states
- The mixture component weights are specific to each state
- In context-dependent models, the mixture component weights may be smoothed using interpolation
- Tied mixture systems work well due to the large amount of parameter sharing and smoothing of the weights
- But we can do better (state clustering)!
- Tied mixtures are still used when time and memory efficiency is important (eg embedded systems)

- Basic idea Explicitly share models or parameters between different contexts
 - enables training data to be shared between the models
 - enables models to share parameters
- Sharing can take place at different levels
- Sharing Gaussians: all distributions share the same set of Gaussians but have different mixture weights (tied mixtures)
- Sharing states: allow different models to share the same states (state clustering)
- Sharing models: merge those context-dependent models that are the most similar (generalised triphones)

A B K A B K

• Basic idea Merge similar context-dependent models

글 에 세 글 에

- Basic idea Merge similar context-dependent models
- Instead of using phones as left and right contexts, define context classes that cover multiple phone types

- Basic idea Merge similar context-dependent models
- Instead of using phones as left and right contexts, define context classes that cover multiple phone types
- Top down merging: Use broad phonetic classes (eg stop, fricative) as context classes

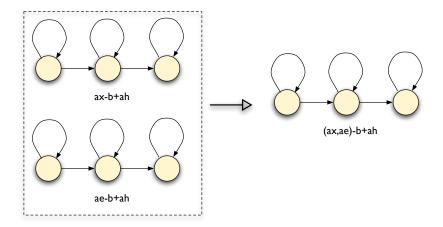
- Basic idea Merge similar context-dependent models
- Instead of using phones as left and right contexts, define context classes that cover multiple phone types
- Top down merging: Use broad phonetic classes (eg stop, fricative) as context classes
- Bottom-up merging: Compare allophone models with different triphone contexts and merge those that are similar

- Basic idea Merge similar context-dependent models
- Instead of using phones as left and right contexts, define context classes that cover multiple phone types
- Top down merging: Use broad phonetic classes (eg stop, fricative) as context classes
- Bottom-up merging: Compare allophone models with different triphone contexts and merge those that are similar
- Merged models will be estimated from more data than individual models: more accurate models, fewer models in total

- Basic idea Merge similar context-dependent models
- Instead of using phones as left and right contexts, define context classes that cover multiple phone types
- Top down merging: Use broad phonetic classes (eg stop, fricative) as context classes
- Bottom-up merging: Compare allophone models with different triphone contexts and merge those that are similar
- Merged models will be estimated from more data than individual models: more accurate models, fewer models in total
- The resultant merged models are referred to as generalized triphones

(4回) (4回) (4回)

Example: Generalized Triphones



▲ □ → ▲ 三

문 🛌 문

- Basic idea Explicitly share models or parameters between different contexts
 - enables training data to be shared between the models
 - enables models to share parameters
- Sharing can take place at different levels
- Sharing Gaussians: all distributions share the same set of Gaussians but have different mixture weights (tied mixtures)
- Sharing states: allow different models to share the same states (state clustering)
- Sharing models: merge those context-dependent models that are the most similar (generalised triphones)

A B K A B K

• Basic idea States which are responsible for acoustically similar data are shared

글 에 세 글 에

- Basic idea States which are responsible for acoustically similar data are shared
- By clustering similar states, the training data associated with individual states may be pooled together results in better parameter estimates for the state

- Basic idea States which are responsible for acoustically similar data are shared
- By clustering similar states, the training data associated with individual states may be pooled together results in better parameter estimates for the state
 - Create a set of context dependent models for a parent phone

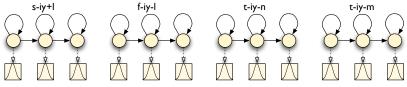
- Basic idea States which are responsible for acoustically similar data are shared
- By clustering similar states, the training data associated with individual states may be pooled together results in better parameter estimates for the state
 - Oreate a set of context dependent models for a parent phone
 - Cluster and tie similar states, ensuring that each resultant clustered state is responsible for "enough" training data (ie setting a minimum state occupation count)

A B K A B K

- Basic idea States which are responsible for acoustically similar data are shared
- By clustering similar states, the training data associated with individual states may be pooled together results in better parameter estimates for the state
 - Screate a set of context dependent models for a parent phone
 - Cluster and tie similar states, ensuring that each resultant clustered state is responsible for "enough" training data (ie setting a minimum state occupation count)
- More flexible than clustering whole models: left and right contexts may be clustered separately

- 4 回 2 - 4 □ 2 - 4 □

Generalized triphones



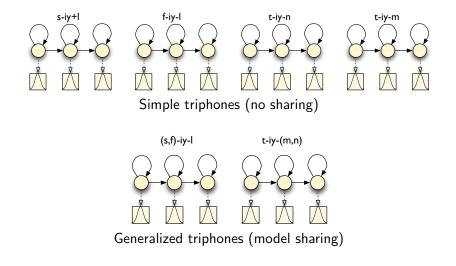
Simple triphones (no sharing)

● ▶ < ミ ▶

< ≣⇒

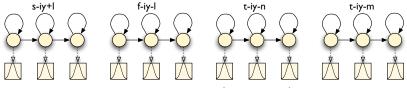
æ

Generalized triphones



-

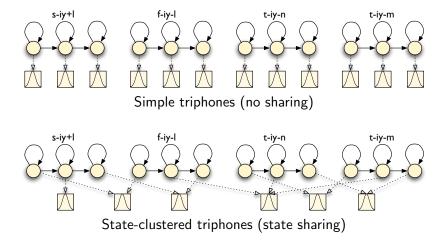
State Clustering



Simple triphones (no sharing)

문 🛌 문

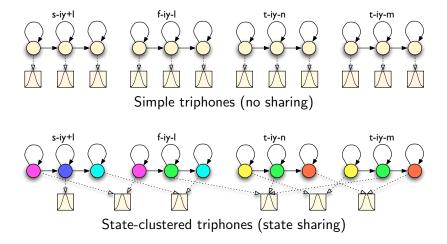
State Clustering



A (1) < (1) < (1) </p>

臣

State Clustering



A (1) < (1) < (1) </p>

3

- 170

→ Ξ → < Ξ →</p>

æ

- Which states should be clustered together?
- Bottom-up clustering, for triphones of the same parent phone

글 🕨 🔸 글 🕨

- Bottom-up clustering, for triphones of the same parent phone
 - Create raw triphone models for each observed triphone context

- Bottom-up clustering, for triphones of the same parent phone
 - Create raw triphone models for each observed triphone context
 - 2 Cluster states as before

ヨト イヨト

- Bottom-up clustering, for triphones of the same parent phone
 - Create raw triphone models for each observed triphone context
 Cluster states as hefere
 - Oluster states as before
- Top-down clustering: start with a parent context independent model then successively split models to create context dependent models

- Bottom-up clustering, for triphones of the same parent phone
 - Create raw triphone models for each observed triphone context
 - Oluster states as before
- Top-down clustering: start with a parent context independent model then successively split models to create context dependent models
- Phonetic decision trees

• Basic idea Build a decision tree for each state of each parent phone, with yes/no questions at each node

- Basic idea Build a decision tree for each state of each parent phone, with yes/no questions at each node
- At the root of the tree, all states are shared

- Basic idea Build a decision tree for each state of each parent phone, with yes/no questions at each node
- At the root of the tree, all states are shared
- Questions split the pool of states, the resultant state clusters are given by the leaves of the tree

- Basic idea Build a decision tree for each state of each parent phone, with yes/no questions at each node
- At the root of the tree, all states are shared
- Questions split the pool of states, the resultant state clusters are given by the leaves of the tree
- Example questions:

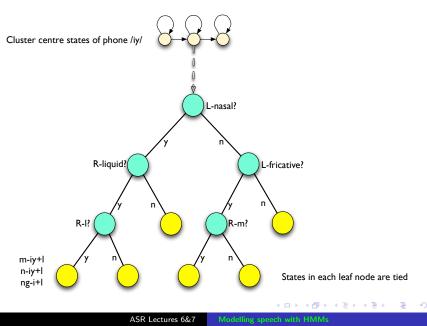
- Basic idea Build a decision tree for each state of each parent phone, with yes/no questions at each node
- At the root of the tree, all states are shared
- Questions split the pool of states, the resultant state clusters are given by the leaves of the tree
- Example questions:
 - Is the left context a nasal?

- Basic idea Build a decision tree for each state of each parent phone, with yes/no questions at each node
- At the root of the tree, all states are shared
- Questions split the pool of states, the resultant state clusters are given by the leaves of the tree
- Example questions:
 - Is the left context a nasal?
 - Is the right context a central stop?

- Basic idea Build a decision tree for each state of each parent phone, with yes/no questions at each node
- At the root of the tree, all states are shared
- Questions split the pool of states, the resultant state clusters are given by the leaves of the tree
- Example questions:
 - Is the left context a nasal?
 - Is the right context a central stop?
- The questions at each node are chosen from a large set of predefined questions

- Basic idea Build a decision tree for each state of each parent phone, with yes/no questions at each node
- At the root of the tree, all states are shared
- Questions split the pool of states, the resultant state clusters are given by the leaves of the tree
- Example questions:
 - Is the left context a nasal?
 - Is the right context a central stop?
- The questions at each node are chosen from a large set of predefined questions
- Choose the question which maximizes the likelihood of the data given the state clusters

- Basic idea Build a decision tree for each state of each parent phone, with yes/no questions at each node
- At the root of the tree, all states are shared
- Questions split the pool of states, the resultant state clusters are given by the leaves of the tree
- Example questions:
 - Is the left context a nasal?
 - Is the right context a central stop?
- The questions at each node are chosen from a large set of predefined questions
- Choose the question which maximizes the likelihood of the data given the state clusters
- Stop splitting if either: (a) the likelihood does not increase by more than a predefined threshold; or (b) the amount of data associated with a split node would below a threshold



Phonetic questions

- Ask questions of the form: does phone at offset *s* have feature *f*?
- Offsets are +/-1 for triphone context
- Example general questions:
 - Stop: b d g p t k
 - Nasal: m n ng
 - Fricative: ch dh f jh s sh th v z zh
 - Liquid: l r w y
 - Vowel: aa ae ah ao aw ax axr ay eh er ...
- Example consonant questions: Un/voiced, front/central/back, fortis (ch f k p s sh t th), lenis (b d dh g jh v z zh), voiced stop,
- Example vowel questions: front, central, back, long, short, diphthong, rounded,

- 4 回 2 - 4 □ 2 - 4 □

• All states of all models:

+Vowel -Vowel +Unrounded -UnFortisLenis +UnFortisLenis +r

- Entry state of all models: -UnFortisLenis -Vowel -Nasal -CentralFront -Unrounded -Fortis
- Exit state of all consonants: +Vowel +Unrounded +High +ee +Rounded +Syllabic

(for Wall St Journal read speech – Young, Odell and Woodland 1994)

• Basic idea Compute the log likelihood of the data associated with a pool of states

< ∃ >

- Basic idea Compute the log likelihood of the data associated with a pool of states
- All states pooled in a single cluster at the root

- Basic idea Compute the log likelihood of the data associated with a pool of states
- All states pooled in a single cluster at the root
- All states have Gaussian output pdf

- Basic idea Compute the log likelihood of the data associated with a pool of states
- All states pooled in a single cluster at the root
- All states have Gaussian output pdf
- Let $\mathbf{S} = \{s_1, s_2, \dots, s_K\}$ be a pool of K states forming a cluster

- Basic idea Compute the log likelihood of the data associated with a pool of states
- All states pooled in a single cluster at the root
- All states have Gaussian output pdf
- Let $\mathbf{S} = \{s_1, s_2, \dots, s_K\}$ be a pool of K states forming a cluster
- Each state s_i has associated with it a set of N_i acoustic observations X_i = {x_{i,1}, x_{i,2}, ..., x_{i,N_i}}

- Basic idea Compute the log likelihood of the data associated with a pool of states
- All states pooled in a single cluster at the root
- All states have Gaussian output pdf
- Let $\mathbf{S} = \{s_1, s_2, \dots, s_K\}$ be a pool of K states forming a cluster
- Each state s_i has associated with it a set of N_i acoustic observations X_i = {x_{i,1}, x_{i,2}, ..., x_{i,N_i}}
- The pool of states S is clustered together to form a single Gaussian output distribution with mean μ_S and covariance Σ_S

- Basic idea Compute the log likelihood of the data associated with a pool of states
- All states pooled in a single cluster at the root
- All states have Gaussian output pdf
- Let $\mathbf{S} = \{s_1, s_2, \dots, s_K\}$ be a pool of K states forming a cluster
- Each state s_i has associated with it a set of N_i acoustic observations X_i = {x_{i,1}, x_{i,2}, ..., x_{i,N_i}}
- The pool of states **S** is clustered together to form a single Gaussian output distribution with mean μ_S and covariance Σ_S
- The log likelihood of the data associated with cluster S is:

$$L(\mathbf{S}) = \sum_{i=1}^{K} \log P(\mathbf{X}_i | \boldsymbol{\mu}_S, \boldsymbol{\Sigma}_S)$$

・ 回 と ・ ヨ と ・ ヨ と

• Basic idea Use the likelihood of the parent state and of the split states to choose the splitting question

《문》 《문》

- Basic idea Use the likelihood of the parent state and of the split states to choose the splitting question
- Split **S** into two partitions **S**_y and **S**_n using a question about the phonetic context

- Basic idea Use the likelihood of the parent state and of the split states to choose the splitting question
- Split **S** into two partitions **S**_y and **S**_n using a question about the phonetic context
- Each partition is now clustered together to form a single Gaussian output distribution with mean μ_{S_y} and covariance Σ_{S_y}) (for partition S_y)

- Basic idea Use the likelihood of the parent state and of the split states to choose the splitting question
- Split **S** into two partitions **S**_y and **S**_n using a question about the phonetic context
- Each partition is now clustered together to form a single Gaussian output distribution with mean μ_{S_y} and covariance Σ_{S_y}) (for partition S_y)
- The likelihood of the data after partition is given by L(S_y) + L(S_n)

- Basic idea Use the likelihood of the parent state and of the split states to choose the splitting question
- Split **S** into two partitions **S**_y and **S**_n using a question about the phonetic context
- Each partition is now clustered together to form a single Gaussian output distribution with mean μ_{S_y} and covariance Σ_{S_y}) (for partition S_y)
- The likelihood of the data after partition is given by L(S_y) + L(S_n)
- The total likelihood of the partitioned data will increase by

$$\Delta = L(\mathbf{S}_y) + L(\mathbf{S}_n) - L(\mathbf{S})$$

• Basic idea Use the likelihood of the parent state and of the split states to choose the splitting question

$$\Delta = L(\mathsf{S}_y) + L(\mathsf{S}_n) - L(\mathsf{S})$$

æ

白 ト ・ ヨ ト ・ ヨ ト

• Basic idea Use the likelihood of the parent state and of the split states to choose the splitting question

$$\Delta = L(\mathbf{S}_y) + L(\mathbf{S}_n) - L(\mathbf{S})$$

• Cycle through all possible questions, compute Δ for each and choose the question for which Δ is biggest

$$\Delta = L(\mathbf{S}_y) + L(\mathbf{S}_n) - L(\mathbf{S})$$

- Cycle through all possible questions, compute Δ for each and choose the question for which Δ is biggest
- Continue by splitting each of the new clusters S_y and S_n

$$\Delta = L(\mathbf{S}_y) + L(\mathbf{S}_n) - L(\mathbf{S})$$

- Cycle through all possible questions, compute Δ for each and choose the question for which Δ is biggest
- Continue by splitting each of the new clusters **S**_y and **S**_n
- Terminate when

$$\Delta = L(\mathbf{S}_y) + L(\mathbf{S}_n) - L(\mathbf{S})$$

- Cycle through all possible questions, compute Δ for each and choose the question for which Δ is biggest
- Continue by splitting each of the new clusters **S**_y and **S**_n
- Terminate when
 - **1** Maximum Δ falls below a threshold

• Basic idea Use the likelihood of the parent state and of the split states to choose the splitting question

$$\Delta = L(\mathbf{S}_y) + L(\mathbf{S}_n) - L(\mathbf{S})$$

- Cycle through all possible questions, compute Δ for each and choose the question for which Δ is biggest
- Continue by splitting each of the new clusters **S**_y and **S**_n
- Terminate when
 - **1** Maximum Δ falls below a threshold
 - The amount of data associated with a split node falls below a threshold

向下 イヨト イヨト

• Basic idea Use the likelihood of the parent state and of the split states to choose the splitting question

$$\Delta = L(\mathbf{S}_y) + L(\mathbf{S}_n) - L(\mathbf{S})$$

- Cycle through all possible questions, compute Δ for each and choose the question for which Δ is biggest
- Continue by splitting each of the new clusters **S**_y and **S**_n
- Terminate when
 - **1** Maximum Δ falls below a threshold
 - The amount of data associated with a split node falls below a threshold
- For a Gaussian output distribution: State likelihood estimates can be estimated using just the *state occupation counts* (obtained at alignment) and the parameters of the Gaussian — no need to use the acoustic data

・ロン ・回 と ・ ヨ と ・ ヨ と

$$\Delta = L(\mathbf{S}_y) + L(\mathbf{S}_n) - L(\mathbf{S})$$

- Cycle through all possible questions, compute Δ for each and choose the question for which Δ is biggest
- Continue by splitting each of the new clusters **S**_y and **S**_n
- Terminate when
 - $\textcircled{ 0 } Maximum \Delta falls below a threshold$
 - The amount of data associated with a split node falls below a threshold
- For a Gaussian output distribution: State likelihood estimates can be estimated using just the *state occupation counts* (obtained at alignment) and the parameters of the Gaussian
 — no need to use the acoustic data
- State occupation count: sum of state occupation probabilities for a state over time

 Basic idea Transforming an HMM-based system based on Gaussian distributions to one based on mixtures of Gaussians

글 🕨 🔸 글 🕨

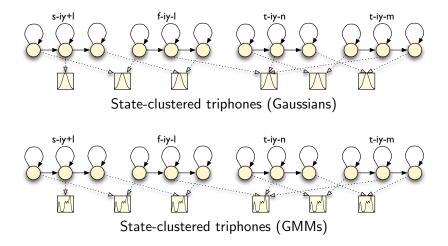
"Mixing up"

- Basic idea Transforming an HMM-based system based on Gaussian distributions to one based on mixtures of Gaussians
- The above methods for state clustering assume that the state outputs are Gaussians—this makes the computations much simpler
- BUT: Gaussian mixtures offer much better acoustic models than Gaussians

"Mixing up"

- Basic idea Transforming an HMM-based system based on Gaussian distributions to one based on mixtures of Gaussians
- The above methods for state clustering assume that the state outputs are Gaussians—this makes the computations much simpler
- BUT: Gaussian mixtures offer much better acoustic models than Gaussians
- Solution:
 - Perform state clustering using Gaussian distributions
 - Split the Gaussian distributions in the clustered states, by cloning and perturbing the means by a small fraction of the standard deviation, and retrain.
 - Repeat by splitting the dominant (highest state occupation count) mixture components in each state

・ロン ・回 と ・ ヨ と ・ ヨ と



<⊡> < ⊒>

-≣->

- Share parameters through state clustering
- Cluster states using phonetic decision trees for each state of parent phone
- Use Gaussian distributions when state clustering
- Then split Gaussians and retrain to obtain a GMM state clustered system

- c1980: First proposed by Bahl et al (IBM)
- Schwartz et al (1985): first paper using triphone models
- Lee (1990): generalized triphones
- Bellegarda (1990), Huang (1992): tied mixture modelling
- Bahl et al (1991): phonetic decision trees first proposed
- Young and Woodland (1994): state clustering
- Young et al (1994): decision tree-based state clustering