Hidden Markov Models and Gaussian Mixture Models

Hiroshi Shimodaira and Steve Renals

Automatic Speech Recognition— ASR Lectures 4&5 23&27 January 2014

Overview

HMMs and GMMs

- Key models and algorithms for HMM acoustic models
- Gaussians
- GMMs: Gaussian mixture models
- HMMs: Hidden Markov models
- HMM algorithms
 - Likelihood computation (forward algorithm)
 - Most probable state sequence (Viterbi algorithm)
 - Estimting the parameters (EM algorithm)

Fundamental Equation of Statistical Speech Recognition

If ${\bf X}$ is the sequence of acoustic feature vectors (observations) and ${\bf W}$ denotes a word sequence, the most likely word sequence ${\bf W}^*$ is given by

$$\mathbf{W}^* = \arg\max_{\mathbf{W}} P(\mathbf{W} \mid \mathbf{X})$$

Fundamental Equation of Statistical Speech Recognition

If ${\bf X}$ is the sequence of acoustic feature vectors (observations) and ${\bf W}$ denotes a word sequence, the most likely word sequence ${\bf W}^*$ is given by

$$\mathbf{W}^* = \arg\max_{\mathbf{W}} P(\mathbf{W} \mid \mathbf{X})$$

Applying Bayes' Theorem:

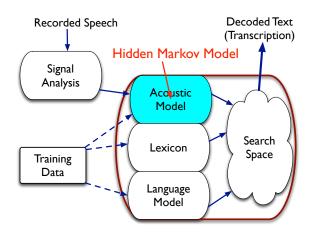
$$P(\mathbf{W} \mid \mathbf{X}) = \frac{p(\mathbf{X} \mid \mathbf{W})P(\mathbf{W})}{p(\mathbf{X})}$$

$$\propto p(\mathbf{X} \mid \mathbf{W})P(\mathbf{W})$$

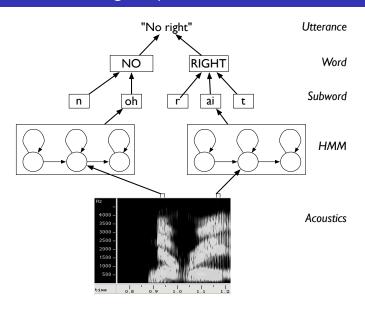
$$\mathbf{W}^* = \arg \max_{\mathbf{W}} \underbrace{p(\mathbf{X} \mid \mathbf{W})}_{\text{Acoustic}} \underbrace{P(\mathbf{W})}_{\text{Language}}$$

$$\mod e$$

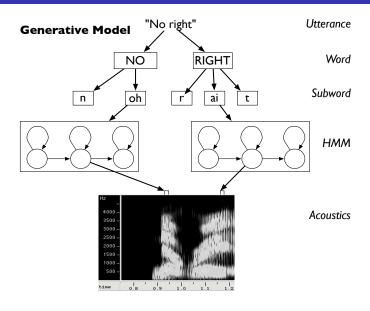
Acoustic Modelling



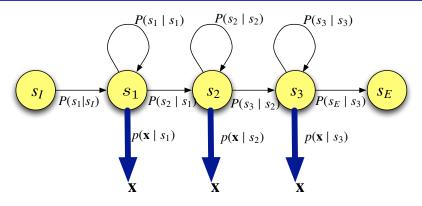
Hierarchical modelling of speech



Hierarchical modelling of speech



Acoustic Model: Continuous Density HMM

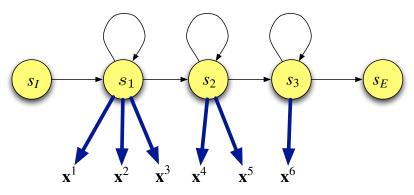


Probabilistic finite state automaton

Paramaters λ :

- Transition probabilities: $a_{kj} = P(S = j \mid S = k)$
- Output probability density function: $b_i(\mathbf{x}) = p(\mathbf{x} \mid S = j)$

Acoustic Model: Continuous Density HMM

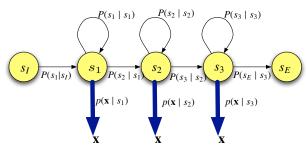


Probabilistic finite state automaton

Paramaters λ :

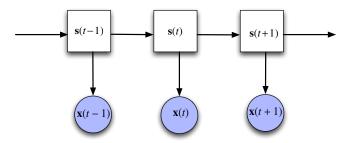
- Transition probabilities: $a_{kj} = P(S = j \mid S = k)$
- Output probability density function: $b_j(\mathbf{x}) = p(\mathbf{x} \mid S = j)$

HMM Assumptions



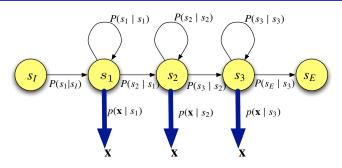
- Observation independence An acoustic observation x is conditionally independent of all other observations given the state that generated it
- Markov process A state is conditionally independent of all other states given the previous state

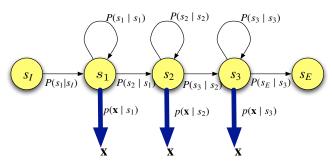
HMM Assumptions



- $\textbf{Observation independence} \ \, \text{An acoustic observation } \textbf{x} \text{ is } \\ \text{conditionally independent of all other observations given the } \\ \text{state that generated it}$
- Markov process A state is conditionally independent of all other states given the previous state

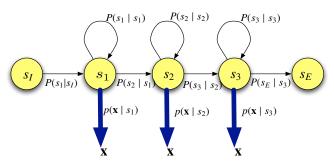
HMM OUTPUT DISTRIBUTION





Single multivariate Gaussian with mean μ_j , covariance matrix Σ_j :

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

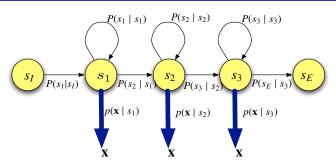


Single multivariate Gaussian with mean μ_j , covariance matrix Σ_j :

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

M-component Gaussian mixture model:

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$



Single multivariate Gaussian with mean μ_j , covariance matrix Σ_j :

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

M-component Gaussian mixture model:

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \mu_{jm}, \Sigma_{jm})$$

Background: cdf

Consider a real valued random variable X

• Cumulative distribution function (cdf) F(x) for X:

$$F(x) = P(X \le x)$$

 To obtain the probability of falling in an interval we can do the following:

$$P(a < X \le b) = P(X \le b) - P(X \le a)$$
$$= F(b) - F(a)$$

Background: pdf

• The rate of change of the cdf gives us the *probability density* function (pdf), p(x):

$$p(x) = \frac{d}{dx}F(x) = F'(x)$$
$$F(x) = \int_{-\infty}^{x} p(x)dx$$

- p(x) is **not** the probability that X has value x. But the pdf is proportional to the probability that X lies in a small interval centred on x.
- Notation: p for pdf, P for probability

The Gaussian distribution (univariate)

- The Gaussian (or Normal) distribution is the most common (and easily analysed) continuous distribution
- It is also a reasonable model in many situations (the famous "bell curve")
- If a (scalar) variable has a Gaussian distribution, then it has a probability density function with this form:

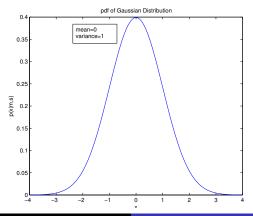
$$p(x|\mu,\sigma^2) = N(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

- The Gaussian is described by two parameters:
 - the mean μ (location)
 - the variance σ^2 (dispersion)

13

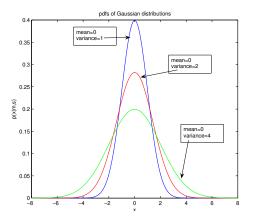
Plot of Gaussian distribution

- Gaussians have the same shape, with the location controlled by the mean, and the spread controlled by the variance
- One-dimensional Gaussian with zero mean and unit variance $(\mu=0,\,\sigma^2=1)$:



Properties of the Gaussian distribution

$$N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$



Parameter estimation

- Estimate mean and variance parameters of a Gaussian from data $x^{(1)}, x^{(2)}, \dots, x^{(N)}$
- Use sample mean and sample variance estimates:

$$\mu=rac{1}{N}\sum_{n=1}^N x^{(n)}$$
 (sample mean)
$$\sigma^2=rac{1}{N}\sum_{n=1}^N (x^{(n)}-\mu)^2$$
 (sample variance)

16

Exercise — maximum likelihood estimation (MLE)

Consider the log likelihood of a set of N training data points $\{x^{(1)}, \ldots, x^{(N)}\}$ being generated by a Gaussian with mean μ and variance σ^2 :

$$L = \ln p(\lbrace x^{(1)}, \dots, x^{(n)} \rbrace \mid \mu, \sigma^2) = -\frac{1}{2} \sum_{n=1}^{N} \left(\frac{(x^{(n)} - \mu)^2}{\sigma^2} - \ln \sigma^2 - \ln(2\pi) \right)$$
$$= -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x^{(n)} - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

By maximising the the log likelihood function with respect to μ show that the maximum likelihood estimate for the mean is indeed the sample mean:

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}.$$

The multivariate Gaussian distribution

• The *d*-dimensional vector $\mathbf{x} = (x_1, \dots, x_d)^T$ follows a multivariate Gaussian (or normal) distribution if it has a probability density function of the following form:

$$\rho(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

The pdf is parameterized by the mean vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_d)^T$ and the covariance matrix $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{d1} & \dots & \sigma_{dd} \end{pmatrix}$.

The multivariate Gaussian distribution

• The *d*-dimensional vector $\mathbf{x} = (x_1, \dots, x_d)^T$ follows a multivariate Gaussian (or normal) distribution if it has a probability density function of the following form:

$$ho(\mathbf{x}|oldsymbol{\mu},oldsymbol{\Sigma}) = rac{1}{(2\pi)^{d/2}|oldsymbol{\Sigma}|^{1/2}} \exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^Toldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)$$

The pdf is parameterized by the mean vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_d)^T$ and the covariance matrix $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{d1} & \dots & \sigma_{dd} \end{pmatrix}$.

The 1-dimensional Gaussian is a special case of this pdf

18

The multivariate Gaussian distribution

• The *d*-dimensional vector $\mathbf{x} = (x_1, \dots, x_d)^T$ follows a multivariate Gaussian (or normal) distribution if it has a probability density function of the following form:

$$ho(\mathbf{x}|oldsymbol{\mu},oldsymbol{\Sigma}) = rac{1}{(2\pi)^{d/2}|oldsymbol{\Sigma}|^{1/2}} \exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^Toldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)$$

The pdf is parameterized by the mean vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_d)^T$ and the covariance matrix $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{d1} & \dots & \sigma_{dd} \end{pmatrix}$.

- The 1-dimensional Gaussian is a special case of this pdf
- The argument to the exponential $0.5(\mathbf{x} \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} \boldsymbol{\mu})$ is referred to as a *quadratic form*.

18

• The mean vector μ is the expectation of \mathbf{x} :

$$\mu = E[x]$$

• The mean vector μ is the expectation of \mathbf{x} :

$$\mu = E[x]$$

• The covariance matrix Σ is the expectation of the deviation of x from the mean:

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

• The mean vector μ is the expectation of \mathbf{x} :

$$\mu = E[x]$$

 The covariance matrix Σ is the expectation of the deviation of x from the mean:

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

• Σ is a $d \times d$ symmetric matrix:

$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)] = E[(x_j - \mu_j)(x_i - \mu_i)] = \sigma_{ji}$$

• The mean vector μ is the expectation of \mathbf{x} :

$$\mu = E[x]$$

 The covariance matrix Σ is the expectation of the deviation of x from the mean:

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

• Σ is a $d \times d$ symmetric matrix:

$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)] = E[(x_j - \mu_j)(x_i - \mu_i)] = \sigma_{ji}$$

• The sign of the covariance helps to determine the relationship between two components:

• The mean vector μ is the expectation of \mathbf{x} :

$$\mu = E[x]$$

 The covariance matrix Σ is the expectation of the deviation of x from the mean:

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

• Σ is a $d \times d$ symmetric matrix:

$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)] = E[(x_j - \mu_j)(x_i - \mu_i)] = \sigma_{ji}$$

- The sign of the covariance helps to determine the relationship between two components:
 - If x_j is large when x_i is large, then $(x_i \mu_i)(x_j \mu_j)$ will tend to be positive;

• The mean vector μ is the expectation of \mathbf{x} :

$$\mu = E[x]$$

 The covariance matrix Σ is the expectation of the deviation of x from the mean:

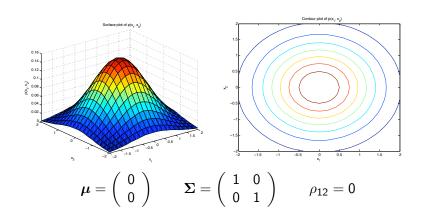
$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

• Σ is a $d \times d$ symmetric matrix:

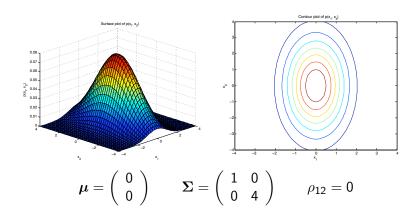
$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)] = E[(x_j - \mu_j)(x_i - \mu_i)] = \sigma_{ji}$$

- The sign of the covariance helps to determine the relationship between two components:
 - If x_j is large when x_i is large, then $(x_i \mu_i)(x_j \mu_j)$ will tend to be positive;
 - If x_j is small when x_i is large, then $(x_i \mu_i)(x_j \mu_j)$ will tend to be negative.

Spherical Gaussian

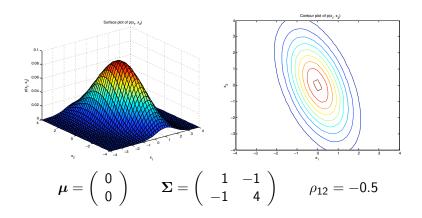


Diagonal Covariance Gaussian



21

Full covariance Gaussian



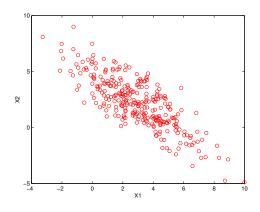
Parameter estimation of a multivariate Gaussian distribution

• It is possible to show that the mean vector $\hat{\mu}$ and covariance matrix $\hat{\Sigma}$ that maximize the likelihood of the training data are given by:

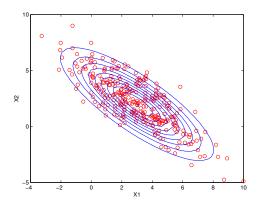
$$\hat{\mu} = rac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)}$$
 $\hat{\Sigma} = rac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \hat{\mu}) (\mathbf{x}^{(n)} - \hat{\mu})^{T}$

 The mean of the distribution is estimated by the sample mean and the covariance by the sample covariance

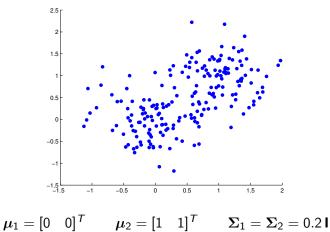
Example data



Maximum likelihood fit to a Gaussian



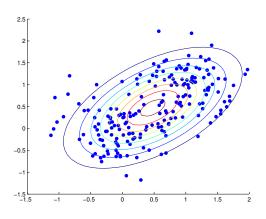
Data in clusters (example 1)



$$\mu_1 = [0 \quad 0]' \qquad \mu_2 = [1 \quad 1]' \qquad \Sigma_1 = \Sigma_2 = 0.2$$

26

Example 1 fit by a Gaussian

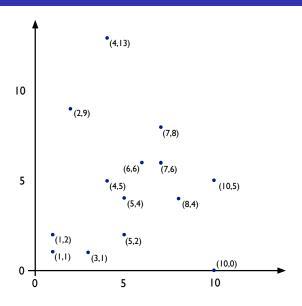


$$oldsymbol{\mu}_1 = [0 \quad 0]^{\mathcal{T}} \qquad oldsymbol{\mu}_2 = [1 \quad 1]^{\mathcal{T}} \qquad oldsymbol{\Sigma}_1 = oldsymbol{\Sigma}_2 = 0.2 \, \mathbf{I}$$

k-means clustering

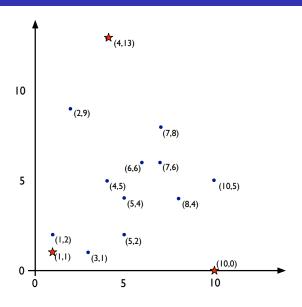
- k-means is an automatic procedure for clustering unlabelled data
- Requires a prespecified number of clusters
- Clustering algorithm chooses a set of clusters with the minimum within-cluster variance
- Guaranteed to converge (eventually)
- Clustering solution is dependent on the initialisation

k-means example: data set

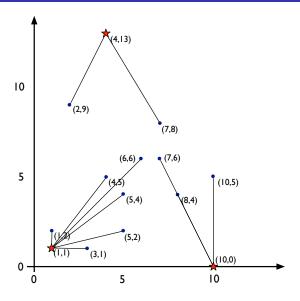


29

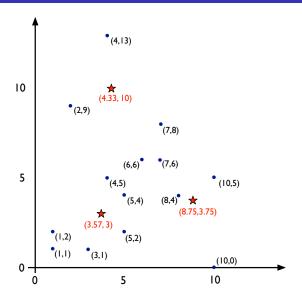
k-means example: initialization



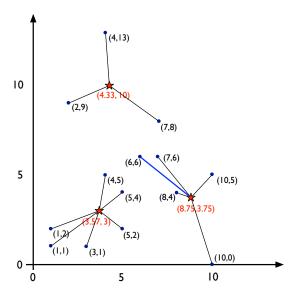
k-means example: iteration 1 (assign points to clusters)



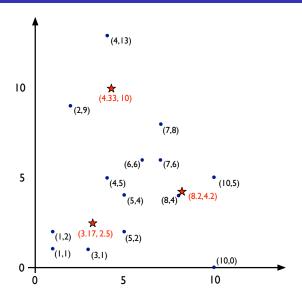
k-means example: iteration 1 (recompute centres)



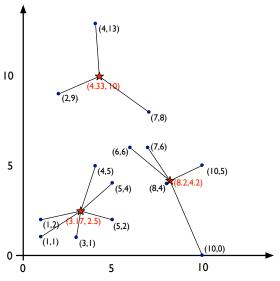
k-means example: iteration 2 (assign points to clusters)



k-means example: iteration 2 (recompute centres)



k-means example: iteration 3 (assign points to clusters)



No changes, so converged

Mixture model

 A more flexible form of density estimation is made up of a linear combination of component densities:

$$p(\mathbf{x}) = \sum_{j=1}^{M} p(\mathbf{x}|j) P(j)$$

- This is called a mixture model or a mixture density
- $p(\mathbf{x}|j)$: component densities
- \bullet P(j): mixing parameters
- Generative model:
 - **1** Choose a mixture component based on P(j)
 - ② Generate a data point x from the chosen component using p(x|j)

Component occupation probability

We can apply Bayes' theorem:

$$P(j|\mathbf{x}) = \frac{p(\mathbf{x}|j)P(j)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|j)P(j)}{\sum_{j=1}^{M} p(\mathbf{x}|j)P(j)}$$

- The posterior probabilities $P(j|\mathbf{x})$ give the probability that component j was responsible for generating data point \mathbf{x}
- The $P(j|\mathbf{x})$ s are called the *component occupation* probabilities (or sometimes called the *responsibilities*)
- Since they are posterior probabilities:

$$\sum_{j=1}^{M} P(j|\mathbf{x}) = 1$$

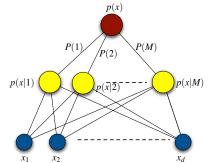
Parameter estimation

- If we knew which mixture component was responsible for a data point:
 - we would be able to assign each point unambiguously to a mixture component
 - and we could estimate the mean for each component Gaussian as the sample mean (just like k-means clustering)
 - and we could estimate the covariance as the sample covariance
- But we don't know which mixture component a data point comes from...
- Maybe we could use the component occupation probabilities $P(j|\mathbf{x})$?

Gaussian mixture model

- The most important mixture model is the Gaussian Mixture Model (GMM), where the component densities are Gaussians
- Consider a GMM, where each component Gaussian $N_j(\mathbf{x}; \mu_j, \Sigma_j)$ has mean μ_j and a spherical covariance $\Sigma_j = \sigma_j^2 \mathbf{I}$

$$p(\mathbf{x}) = \sum_{j=1}^{M} P(j)p(\mathbf{x}|j) = \sum_{j=1}^{M} P(j)N_j(\mathbf{x}; \boldsymbol{\mu}_j, \sigma_j^2 \mathbf{I})$$



GMM Parameter estimation when we know which component generated the data

- Define the indicator variable $z_{jn} = 1$ if component j generated component $\mathbf{x}^{(n)}$ (and 0 otherwise)
- If z_{jn} wasn't hidden then we could count the number of observed data points generated by j:

$$N_j = \sum_{n=1}^N z_{jn}$$

And estimate the mean, variance and mixing parameters as:

$$\hat{\mu}_{j} = \frac{\sum_{n} z_{jn} \mathbf{x}^{(n)}}{N_{j}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{n} z_{jn} || \mathbf{x}^{(n)} - \hat{\mu}_{j} ||^{2}}{N_{j}}$$

$$\hat{P}(j) = \frac{1}{N} \sum_{j} z_{jn} = \frac{N_{j}}{N}$$

Soft assignment

• Estimate "soft counts" based on the component occupation probabilities $P(j | \mathbf{x}^{(n)})$:

$$N_j^* = \sum_{n=1}^N P(j | \mathbf{x}^{(n)})$$

- We can imagine assigning data points to component j weighted by the component occupation probability $P(j|\mathbf{x}^{(n)})$
- So we could imagine estimating the mean, variance and prior probabilities as:

$$\hat{\mu}_{j} = \frac{\sum_{n} P(j | \mathbf{x}^{(n)}) \mathbf{x}^{(n)}}{\sum_{n} P(j | \mathbf{x}^{(n)})} = \frac{\sum_{n} P(j | \mathbf{x}^{(n)}) \mathbf{x}^{(n)}}{N_{j}^{*}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{n} P(j | \mathbf{x}^{(n)}) || \mathbf{x}^{(n)} - \mu_{j} ||^{2}}{\sum_{n} P(j | \mathbf{x}^{(n)})} = \frac{\sum_{n} P(j | \mathbf{x}^{(n)}) || \mathbf{x}^{(n)} - \mu_{j} ||^{2}}{N_{j}^{*}}$$

$$\hat{P}(j) = \frac{1}{N} \sum_{n} P(j | \mathbf{x}^{(n)}) = \frac{N_{j}^{*}}{N}$$

EM algorithm

• Problem! Recall that:

$$P(j|\mathbf{x}) = \frac{p(\mathbf{x}|j)P(j)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|j)P(j)}{\sum_{j=1}^{M} p(\mathbf{x}|j)P(j)}$$

We need to know $p(\mathbf{x}|j)$ and P(j) to estimate the parameters of $p(j|\mathbf{x})$, and to estimate P(j)....

- Solution: an iterative algorithm where each iteration has two parts:
 - Compute the component occupation probabilities $P(j|\mathbf{x})$ using the current estimates of the GMM parameters (means, variances, mixing parameters) (E-step)
 - Computer the GMM parameters using the current estimates of the component occupation probabilities (M-step)
- Starting from some initialization (e.g. using k-means for the means) these steps are alternated until convergence
- This is called the EM Algorithm and can be shown to maximize the likelihood

ASR Lectures 4&5 Hidden Markov Models and Gaussian Mixture Models

42

Maximum likelihood parameter estimation

• The likelihood of a data set $\mathbf{X} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\}$ is given by:

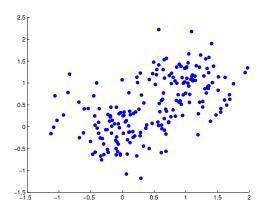
$$\mathcal{L} = \prod_{n=1}^{N} p(\mathbf{x}^{(n)}) = \prod_{n=1}^{N} \sum_{j=1}^{M} p(\mathbf{x}^{(n)}|j) P(j)$$

• We can regard the *negative log likelihood* as an error function:

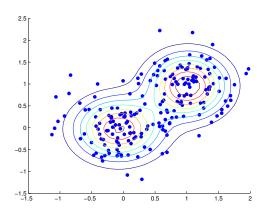
$$E = -\ln \mathcal{L} = -\sum_{n=1}^{N} \ln p(\mathbf{x}^{(n)})$$
$$= -\sum_{n=1}^{N} \ln \left(\sum_{j=1}^{M} p(\mathbf{x}^{(n)}|j) P(j) \right)$$

 Considering the derivatives of E with respect to the parameters, gives expressions like the previous slide

Example 1 fit using a GMM

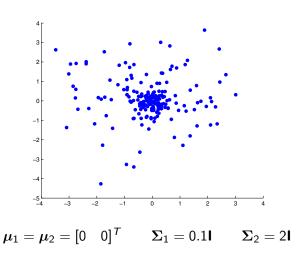


Example 1 fit using a GMM

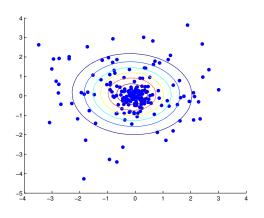


Fitted with a two component GMM using EM

Peakily distributed data (Example 2)

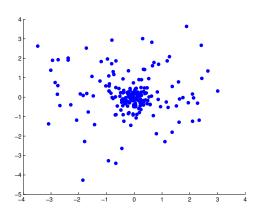


Example 2 fit by a Gaussian

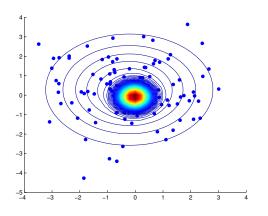


$$oldsymbol{\mu}_1 = oldsymbol{\mu}_2 = [0 \quad 0]^T \qquad oldsymbol{\Sigma}_1 = 0.1 oldsymbol{I} \qquad oldsymbol{\Sigma}_2 = 2 oldsymbol{I}$$

Example 2 fit by a GMM

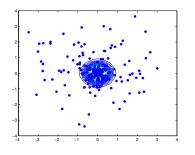


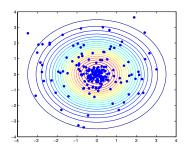
Example 2 fit by a GMM



Fitted with a two component GMM using EM

Example 2: component Gaussians

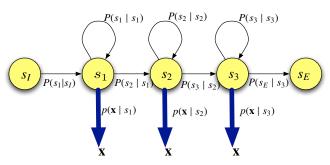




Comments on GMMs

- GMMs trained using the EM algorithm are able to self organize to fit a data set
- Individual components take responsibility for parts of the data set (probabilistically)
- Soft assignment to components not hard assignment "soft clustering"
- GMMs scale very well, e.g.: large speech recognition systems can have 30,000 GMMs, each with 32 components: sometimes 1 million Gaussian components!! And the parameters all estimated from (a lot of) data by EM

Back to HMMs...



Output distribution:

• Single multivariate Gaussian with mean μ_i , covariance matrix Σ_i :

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid S = j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

• *M*-component Gaussian mixture model:

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid S = j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

50

The three problems of HMMs

Working with HMMs requires the solution of three problems:

1 Likelihood Determine the overall likelihood of an observation sequence $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T)$ being generated by an HMM. (NB: \mathbf{x}_t is used to denote $\mathbf{x}^{(t)}$ hereafter)

The three problems of HMMs

Working with HMMs requires the solution of three problems:

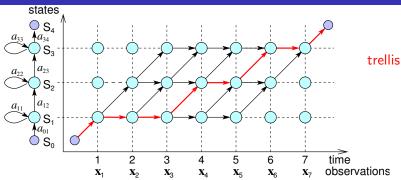
- **1 Likelihood** Determine the overall likelihood of an observation sequence $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T)$ being generated by an HMM. (NB: \mathbf{x}_t is used to denote $\mathbf{x}^{(t)}$ hereafter)
- Oecoding Given an observation sequence and an HMM, determine the most probable hidden state sequence

The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **Likelihood** Determine the overall likelihood of an observation sequence $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T)$ being generated by an HMM. (NB: \mathbf{x}_t is used to denote $\mathbf{x}^{(t)}$ hereafter)
- Oecoding Given an observation sequence and an HMM, determine the most probable hidden state sequence
- **Training** Given an observation sequence and an HMM, learn the best HMM parameters $\lambda = \{\{a_{jk}\}, \{b_j()\}\}$

1. Likelihood: how to calculate?



$$P(X, \text{path}_{j} | \Lambda) = P(X | \text{path}_{j}, \Lambda) P(\text{path}_{j} | \Lambda)$$

$$= P(X | s_{0}s_{1}s_{1}s_{2}s_{2}s_{3}s_{3}s_{4}, \Lambda) P(s_{0}s_{1}s_{1}s_{2}s_{2}s_{3}s_{3}s_{4} | \Lambda)$$

$$= b_{1}(\mathbf{x}_{1})b_{1}(\mathbf{x}_{2})b_{1}(\mathbf{x}_{3})b_{2}(\mathbf{x}_{4})b_{2}(\mathbf{x}_{5})b_{3}(\mathbf{x}_{6})b_{3}(\mathbf{x}_{7})a_{01}a_{11}a_{11}a_{12}a_{22}a_{23}a_{33}a_{34}$$

$$P(X | \Lambda) = \sum_{\substack{\{\text{path}_{j}\}\\ \text{forward(backward) algorithm}}} P(X, \text{path}_{j} | \Lambda) \qquad \simeq \max_{\substack{\text{path}_{j}}} P(X, \text{path}_{j} | \Lambda)$$

ASR Lectures 4&5

1. Likelihood: The Forward algorithm

- Goal: determine $p(X \mid \lambda)$
- Sum over all possible state sequences $s_1s_2...s_T$ that could result in the observation sequence **X**

1. Likelihood: The Forward algorithm

- Goal: determine $p(X \mid \lambda)$
- Sum over all possible state sequences $s_1s_2...s_T$ that could result in the observation sequence ${\bf X}$
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)

1. Likelihood: The Forward algorithm

- Goal: determine $p(X \mid \lambda)$
- Sum over all possible state sequences $s_1s_2...s_T$ that could result in the observation sequence ${\bf X}$
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Hown many paths calculations in $p(X \mid \lambda)$?

$$\sim \underbrace{N \times N \times \cdots N}_{T \text{ times}} = N^{T} \qquad N : \text{ number of HMM states}$$
$$T : \text{ length of observation}$$

e.g.
$$N=3, T=20 \rightarrow \approx 10^{10}$$

1. Likelihood: The Forward algorithm

- Goal: determine $p(X \mid \lambda)$
- Sum over all possible state sequences $s_1 s_2 \dots s_T$ that could result in the observation sequence X
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Hown many paths calculations in $p(X \mid \lambda)$?

$$\sim \underbrace{N \times N \times \cdots N}_{\text{T times}} = N^{\text{T}} \qquad N: \text{ number of HMM states}$$

$$T: \text{ length of observation}$$

e.g.
$$N = 3$$
, $T = 20 \rightarrow \approx 10^{10}$

• Computation complexity for multiplication: $O(2TN^T)$

1. Likelihood: The Forward algorithm

- Goal: determine $p(X \mid \lambda)$
- Sum over all possible state sequences $s_1s_2...s_T$ that could result in the observation sequence ${\bf X}$
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Hown many paths calculations in $p(X \mid \lambda)$?

$$\sim \underbrace{N \times N \times \cdots N}_{\text{T times}} = N^{\text{T}} \qquad N: \text{ number of HMM states}$$

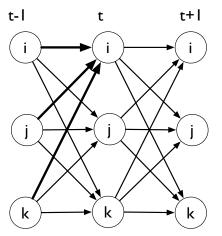
$$T: \text{ length of observation}$$

e.g.
$$N = 3$$
, $T = 20 \rightarrow \approx 10^{10}$

- Computation complexity for multiplication: $O(2TN^T)$
- The Forward algorithm reduces this to $O(TN^2)$

Recursive algorithms on HMMs

Visualize the problem as a state-time trellis



1. Likelihood: The Forward algorithm

- Goal: determine $p(X \mid \lambda)$
- Sum over all possible state sequences $s_1s_2...s_T$ that could result in the observation sequence **X**
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Forward probability, $\alpha_t(j)$: the probability of observing the observation sequence $\mathbf{x}_1 \dots \mathbf{x}_t$ and being in state j at time t:

$$\alpha_t(j) = p(\mathbf{x}_1, \dots, \mathbf{x}_t, S(t) = j \mid \lambda)$$

1. Likelihood: The Forward recursion

Initialization

$$\alpha_0(s_I) = 1$$
 $\alpha_0(j) = 0 \quad \text{if } j \neq s_I$

1. Likelihood: The Forward recursion

Initialization

$$\alpha_0(s_I) = 1$$
 $\alpha_0(j) = 0 \quad \text{if } j \neq s_I$

Recursion

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\mathbf{x}_t) \qquad 1 \leq j \leq N, \ 1 \leq t \leq T$$

56

1. Likelihood: The Forward recursion

Initialization

$$\alpha_0(s_I) = 1$$
 $\alpha_0(j) = 0 \quad \text{if } j \neq s_I$

Recursion

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\mathbf{x}_t) \qquad 1 \leq j \leq N, \ 1 \leq t \leq T$$

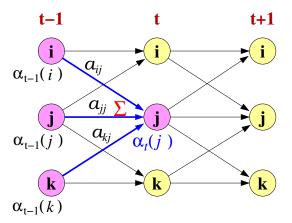
Termination

$$p(\mathbf{X} \mid \boldsymbol{\lambda}) = \alpha_T(s_E) = \sum_{i=1}^{N} \alpha_T(i) a_{iE}$$

 s_I : initial state, s_F : final state

1. Likelihood: Forward Recursion

$$\alpha_t(j) = p(\mathbf{x}_1, \dots, \mathbf{x}_t, S(t) = j \mid \lambda) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$



 Instead of summing over all possible state sequences, just consider the most likely

- Instead of summing over all possible state sequences, just consider the most likely
- Achieve this by changing the summation to a maximisation in the recursion:

$$V_t(j) = \max_i V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$

- Instead of summing over all possible state sequences, just consider the most likely
- Achieve this by changing the summation to a maximisation in the recursion:

$$V_t(j) = \max_i V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$

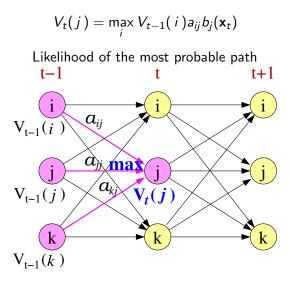
 Changing the recursion in this way gives the likelihood of the most probable path

- Instead of summing over all possible state sequences, just consider the most likely
- Achieve this by changing the summation to a maximisation in the recursion:

$$V_t(j) = \max_i V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$

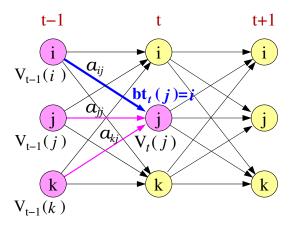
- Changing the recursion in this way gives the likelihood of the most probable path
- We need to keep track of the states that make up this path by keeping a sequence of backpointers to enable a Viterbi backtrace: the backpointer for each state at each time indicates the previous state on the most probable path

Viterbi Recursion



Viterbi Recursion

Backpointers to the previous state on the most probable path



2. Decoding: The Viterbi algorithm

Initialization

$$V_0(i) = 1$$

 $V_0(j) = 0$ if $j \neq i$
 $bt_0(j) = 0$

2. Decoding: The Viterbi algorithm

Initialization

$$V_0(i) = 1$$

 $V_0(j) = 0$ if $j \neq i$
 $bt_0(j) = 0$

Recursion

$$V_t(j) = \max_{i=1}^N V_{t-1}(i)a_{ij}b_j(\mathbf{x}_t)$$

$$bt_t(j) = \arg\max_{i=1}^N V_{t-1}(i)a_{ij}b_j(\mathbf{x}_t)$$

2. Decoding: The Viterbi algorithm

Initialization

$$V_0(i) = 1$$

 $V_0(j) = 0$ if $j \neq i$
 $bt_0(j) = 0$

Recursion

$$V_t(j) = \max_{i=1}^N V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$

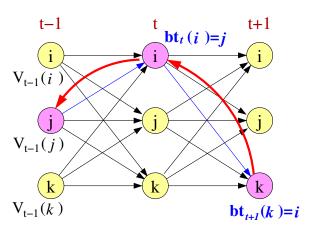
$$bt_t(j) = \arg\max_{i=1}^N V_{t-1}(i) a_{ij} b_j(\mathbf{x}_t)$$

Termination

$$P^* = V_T(s_E) = \max_{i=1}^N V_T(i) a_{iE}$$
$$s_T^* = bt_T(q_E) = \arg \max_{i=1}^N V_T(i) a_{iE}$$

Viterbi Backtrace

Backtrace to find the state sequence of the most probable path



3. Training: Forward-Backward algorithm

ullet Goal: Efficiently estimate the parameters of an HMM λ from an observation sequence

3. Training: Forward-Backward algorithm

- ullet Goal: Efficiently estimate the parameters of an HMM λ from an observation sequence
- Assume single Gaussian output probability distribution

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

3. Training: Forward-Backward algorithm

- Goal: Efficiently estimate the parameters of an HMM λ from an observation sequence
- Assume single Gaussian output probability distribution

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

- Parameters λ :
 - Transition probabilities *aii*:

$$\sum_{j} a_{ij} = 1$$

• Gaussian parameters for state *j*: mean vector μ_i ; covariance matrix Σ_i

63

• If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding
- Maximum likelihood estimate of a_{ij} , if $C(i \rightarrow j)$ is the count of transitions from i to j

$$\hat{a}_{ij} = \frac{C(i \to j)}{\sum_{k} C(i \to k)}$$

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding
- Maximum likelihood estimate of a_{ij} , if $C(i \rightarrow j)$ is the count of transitions from i to j

$$\hat{a}_{ij} = \frac{C(i \to j)}{\sum_{k} C(i \to k)}$$

 Likewise if Z_j is the set of observed acoustic feature vectors assigned to state j, we can use the standard maximum likelihood estimates for the mean and the covariance:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{\sum_{\mathbf{x} \in Z_{j}} \mathbf{x}}{|Z_{j}|}$$

$$\hat{\boldsymbol{\Sigma}}_{j} = \frac{\sum_{\mathbf{x} \in Z_{j}} (\mathbf{x} - \hat{\boldsymbol{\mu}}_{j}) (\mathbf{x} - \hat{\boldsymbol{\mu}}_{j})^{T}}{|Z_{i}|}$$

• Viterbi training is an approximation—we would like to consider *all* possible paths

- Viterbi training is an approximation—we would like to consider *all* possible paths
- In this case rather than having a hard state-time alignment we estimate a probability

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_t(j)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_t(j)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_t(j)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')
- Each iteration has two steps:

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_t(j)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')
- Each iteration has two steps:
 - E-step estimate the state occupation probabilities (Expectation)

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_t(j)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')
- Each iteration has two steps:
 - E-step estimate the state occupation probabilities (Expectation)
 - M-step re-estimate the HMM parameters based on the estimated state occupation probabilities (Maximisation)

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_t(j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T \mid S(t) = j, \lambda)$$

The probability of future observations given a the HMM is in state j at time t

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_t(j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T \mid S(t) = j, \lambda)$$

The probability of future observations given a the HMM is in state j at time t

• These can be recursively computed (going backwards in time)

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_t(j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T \mid S(t) = j, \lambda)$$

The probability of future observations given a the HMM is in state j at time t

- These can be recursively computed (going backwards in time)
 - Initialisation

$$\beta_T(i) = a_{iE}$$

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_t(j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T \mid S(t) = j, \lambda)$$

The probability of future observations given a the HMM is in state j at time t

- These can be recursively computed (going backwards in time)
 - Initialisation

$$\beta_T(i) = a_{iE}$$

Recursion

$$eta_t(i) = \sum_{j=1}^N \mathsf{a}_{ij} b_j(\mathsf{x}_{t+1}) eta_{t+1}(j) \quad ext{for } t = T-1, \dots, 1$$

Backward probabilities

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_t(j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T \mid S(t) = j, \lambda)$$

The probability of future observations given a the HMM is in state j at time t

- These can be recursively computed (going backwards in time)
 - Initialisation

$$\beta_T(i) = a_{iE}$$

Recursion

$$eta_t(i) = \sum_{j=1}^N \mathsf{a}_{ij} b_j(\mathsf{x}_{t+1}) eta_{t+1}(j) \quad ext{for } t = T-1, \dots, 1$$

Termination

$$p(\mathbf{X} \mid \boldsymbol{\lambda}) = \beta_0(I) = \sum_{i=1}^{N} a_{ij} b_j(\mathbf{x}_1) \beta_1(j) = \alpha_T(s_E)$$

Backward Recursion

$$\beta_{t}(j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_{T} \mid S(t) = j, \lambda) = \sum_{j=1}^{N} a_{ij} b_{j}(\mathbf{x}_{t+1}) \beta_{t+1}(j)$$

$$\mathbf{t-1} \qquad \mathbf{t} \qquad \mathbf{t+1}$$

$$\mathbf{i} \qquad \mathbf{j} \qquad \beta_{t+1}(i)$$

$$\mathbf{k} \qquad \mathbf{k} \qquad \mathbf{k}$$

$$\beta_{t+1}(k)$$

State Occupation Probability

• The state occupation probability $\gamma_t(j)$ is the probability of occupying state *j* at time *t* given the sequence of observations

68

State Occupation Probability

- The state occupation probability γ_t(j) is the probability of occupying state j at time t given the sequence of observations
- Express in terms of the forward and backward probabilities:

$$\gamma_t(j) = P(S(t) = j \mid \mathbf{X}, \lambda) = \frac{1}{\alpha_T(s_E)} \alpha_t(j) \beta_t(j)$$
 recalling that $p(\mathbf{X}|\lambda) = \alpha_T(s_E)$

State Occupation Probability

- The state occupation probability $\gamma_t(j)$ is the probability of occupying state j at time t given the sequence of observations
- Express in terms of the forward and backward probabilities:

$$\gamma_t(j) = P(S(t) = j \mid \mathbf{X}, \lambda) = \frac{1}{\alpha_T(s_E)} \alpha_t(j) \beta_t(j)$$

recalling that $p(\mathbf{X}|\lambda) = \alpha_T(s_E)$

Since

$$\alpha_{t}(j)\beta_{t}(j) = p(\mathbf{x}_{1},...,\mathbf{x}_{t},S(t)=j \mid \lambda)$$

$$p(\mathbf{x}_{t+1},...,\mathbf{x}_{T} \mid S(t)=j,\lambda)$$

$$= p(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},...,\mathbf{x}_{T},S(t)=j \mid \lambda)$$

$$= p(\mathbf{X},S(t)=j \mid \lambda)$$

$$P(S(t) = j \mid \mathbf{X}, \lambda) = \frac{p(\mathbf{X}, S(t) = j \mid \lambda)}{p(\mathbf{X} \mid \lambda)}$$

Re-estimation of Gaussian parameters

• The sum of state occupation probabilities through time for a state, may be regarded as a "soft" count

69

Re-estimation of Gaussian parameters

- The sum of state occupation probabilities through time for a state, may be regarded as a "soft" count
- We can use this "soft" alignment to re-estimate the HMM parameters:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(j) \mathbf{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

$$\hat{\boldsymbol{\Sigma}}_{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(j) (\mathbf{x}_{t} - \hat{\boldsymbol{\mu}}_{j}) (\mathbf{x} - \hat{\boldsymbol{\mu}}_{j})^{T}}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

Re-estimation of transition probabilities

 Similarly to the state occupation probability, we can estimate $\xi_t(i,j)$, the probability of being in i at time t and j at t+1, given the observations:

$$\xi_{t}(i,j) = P(S(t) = i, S(t+1) = j \mid \mathbf{X}, \lambda)$$

$$= \frac{P(S(t) = i, S(t+1) = j, \mathbf{X} \mid \lambda)}{p(\mathbf{X} \mid \Lambda)}$$

$$= \frac{\alpha_{t}(i)a_{ij}b_{j}(\mathbf{x}_{t+1})\beta_{t+1}(j)}{\alpha_{T}(s_{E})}$$

Re-estimation of transition probabilities

• Similarly to the state occupation probability, we can estimate $\xi_t(i,j)$, the probability of being in i at time t and j at t+1, given the observations:

$$\xi_{t}(i,j) = P(S(t) = i, S(t+1) = j \mid \mathbf{X}, \lambda)$$

$$= \frac{P(S(t) = i, S(t+1) = j, \mathbf{X} \mid \lambda)}{p(\mathbf{X} \mid \Lambda)}$$

$$= \frac{\alpha_{t}(i)a_{ij}b_{j}(\mathbf{x}_{t+1})\beta_{t+1}(j)}{\alpha_{T}(s_{E})}$$

We can use this to re-estimate the transition probabilities

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T} \xi_t(i, j)}{\sum_{k=1}^{N} \sum_{t=1}^{T} \xi_t(i, k)}$$

Pulling it all together

 Iterative estimation of HMM parameters using the EM algorithm. At each iteration

E step For all time-state pairs

1 Recursively compute the forward probabilities $\alpha_t(j)$ and backward probabilities $\beta_t(j)$

Hidden Markov Models and Gaussian Mixture Models

② Compute the state occupation probabilities $\gamma_t(j)$ and $\xi_t(i,j)$

Pulling it all together

- Iterative estimation of HMM parameters using the EM algorithm. At each iteration
 - E step For all time-state pairs
 - Recursively compute the forward probabilities $\alpha_t(j)$ and backward probabilities $\beta_t(j)$
 - ② Compute the state occupation probabilities $\gamma_t(j)$ and $\xi_t(i,j)$
 - M step Based on the estimated state occupation probabilities re-estimate the HMM parameters: mean vectors μ_j , covariance matrices Σ_j and transition probabilities a_{ij}

Pulling it all together

- Iterative estimation of HMM parameters using the EM algorithm. At each iteration
 - E step For all time-state pairs
 - Recursively compute the forward probabilities $\alpha_t(j)$ and backward probabilities $\beta_t(j)$
 - ② Compute the state occupation probabilities $\gamma_t(j)$ and $\xi_t(i,j)$

- M step Based on the estimated state occupation probabilities re-estimate the HMM parameters: mean vectors μ_j , covariance matrices Σ_j and transition probabilities a_{ij}
- The application of the EM algorithm to HMM training is sometimes called the Forward-Backward algorithm

Extension to a corpus of utterances

- We usually train from a large corpus of R utterances
- If \mathbf{x}_t^r is the tth frame of the rth utterance \mathbf{X}^r then we can compute the probabilities $\alpha_t^r(j)$, $\beta_t^r(j)$, $\gamma_t^r(j)$ and $\xi_t^r(i,j)$ as before
- The re-estimates are as before, except we must sum over the R utterances, eg:

$$\hat{\mu}_{j} = \frac{\sum_{r=1}^{R} \sum_{t=1}^{T} \gamma_{t}^{r}(j) \mathbf{x}_{t}^{r}}{\sum_{r=1}^{R} \sum_{t=1}^{T} \gamma_{t}^{r}(j)}$$

Extension to Gaussian mixture model (GMM)

 The assumption of a Gaussian distribution at each state is very strong; in practice the acoustic feature vectors associated with a state may be strongly non-Gaussian

Extension to Gaussian mixture model (GMM)

- The assumption of a Gaussian distribution at each state is very strong; in practice the acoustic feature vectors associated with a state may be strongly non-Gaussian
- In this case an *M*-component Gaussian mixture model is an appropriate density function:

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

Given enough components, this family of functions can model any distribution.

Extension to Gaussian mixture model (GMM)

- The assumption of a Gaussian distribution at each state is very strong; in practice the acoustic feature vectors associated with a state may be strongly non-Gaussian
- In this case an *M*-component Gaussian mixture model is an appropriate density function:

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

Given enough components, this family of functions can model any distribution.

• Train using the EM algorithm, in which the component estimation probabilities are estimated in the E-step

EM training of HMM/GMM

• Rather than estimating the state-time alignment, we estimate the component/state-time alignment, and component-state occupation probabilities $\gamma_t(j,m)$: the probability of occupying mixture component m of state j at time t

EM training of HMM/GMM

- Rather than estimating the state-time alignment, we estimate the component/state-time alignment, and component-state occupation probabilities $\gamma_t(j,m)$: the probability of occupying mixture component m of state j at time t
- We can thus re-estimate the mean of mixture component m of state j as follows

$$\hat{\boldsymbol{\mu}}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(j, m) \mathbf{x}_t}{\sum_{t=1}^{T} \gamma_t(j, m)}$$

And likewise for the covariance matrices (mixture models often use diagonal covariance matrices)

EM training of HMM/GMM

- Rather than estimating the state-time alignment, we estimate the component/state-time alignment, and component-state occupation probabilities $\gamma_t(j,m)$: the probability of occupying mixture component m of state j at time t
- We can thus re-estimate the mean of mixture component m of state j as follows

$$\hat{\boldsymbol{\mu}}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(j, m) \mathbf{x}_t}{\sum_{t=1}^{T} \gamma_t(j, m)}$$

And likewise for the covariance matrices (mixture models often use diagonal covariance matrices)

 The mixture coefficients are re-estimated in a similar way to transition probabilities:

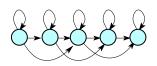
$$\hat{c}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(j, m)}{\sum_{\ell=1}^{M} \sum_{t=1}^{T} \gamma_t(j, \ell)}$$

Doing the computation

- The forward, backward and Viterbi recursions result in a long sequence of probabilities being multiplied
- This can cause floating point underflow problems
- In practice computations are performed in the log domain (in which multiplies become adds)
- Working in the log domain also avoids needing to perform the exponentiation when computing Gaussians

A note on HMM topology

left-to-right model



parallel path left-to-right model

ergodic model

$$\left(\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right)$$

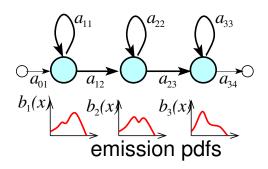
$$\begin{pmatrix} a_{11} & a_{12} & 0 \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \qquad \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 & 0 \\ 0 & a_{22} & a_{23} & a_{24} & 0 \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55} \end{pmatrix} \qquad \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{pmatrix}$$

Speech recognition: left-to-right HMM with 3 \sim 5 states

Speaker recognition: ergodic HMM

A note on HMM emission probabilities



	Emission prob.	
Continuous (density) HMM	continuous density	GMM, NN/DNN
Discrete (probability) HMM	discrete probability	VQ
Semi-continuous HMM	continuous density	tied mixture
(tied-mixture HMM)		

Summary: HMMs

- HMMs provide a generative model for statistical speech recognition
- Three key problems
 - Computing the overall likelihood: the Forward algorithm
 - ② Decoding the most likely state sequence: the Viterbi algorithm
 - Sestimating the most likely parameters: the EM (Forward-Backward) algorithm
- Solutions to these problems are tractable due to the two key HMM assumptions
 - Conditional independence of observations given the current state
 - Markov assumption on the states

References: HMMs

- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195–304: section 2.2.
- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at http://www.cs.colorado.edu/~martin/SLP/Errata/ SLP2-PIEV-Errata.html)
- Rabiner and Juang (1989). "An introduction to hidden Markov models", IEEE ASSP Magazine, 3 (1), 4–16.
- Renals and Hain (2010). "Speech Recognition",
 Computational Linguistics and Natural Language Processing Handbook, Clark, Fox and Lappin (eds.), Blackwells.