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Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is
given by

W* = arg max P(W | X)

Applying Bayes' Theorem:
p(X | W)P(W)

p(X)
o< p(X | W)P(W)

P(W [ X) =

W* =argmax p(X | W) P(W)
W ~— ~——

Acoustic  Language
model model
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Overview

HMMs and GMMs

Key models and algorithms for HMM acoustic models
Gaussians

GMMs: Gaussian mixture models

HMMs: Hidden Markov models

HMM algorithms

o Likelihood computation (forward algorithm)
o Most probable state sequence (Viterbi algorithm)
o Estimting the parameters (EM algorithm)
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Hierarchical modelling of speech

Generative Model 'O right" Utterance
RIGHT Word
Subword

[n]

3530

HMM

Acoustics
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Acoustic Model: Continuous Density HMM
x! X2 X3 x* X x°
Probabilistic finite state automaton
Paramaters X:

@ Transition probabilities: ayj = P(S=j | S = k)
e Output probability density function: bj(x) = p(x| S = j)
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Acoustic Model: Continuous Density HMM

P(s1 | s1) P(sy | 52) P(s3 | 83)

Probabilistic finite state automaton

Paramaters A:
e Transition probabilities: aj = P(S=j | S = k)
e Output probability density function: bj(x) = p(x | S = j)
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HMM Assumptions
: :P(Sl|sl)

@ Observation independence An acoustic observation x is
conditionally independent of all other observations given the
state that generated it

@ Markov process A state is conditionally independent of all
other states given the previous state
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HMM Assumptions

s(1)

— st s(t+1) b—mo—p

Y
\ A

@ @ HMM OUTPUT DISTRIBUTION

© Observation independence An acoustic observation x is
conditionally independent of all other observations given the
state that generated it

@ Markov process A state is conditionally independent of all
other states given the previous state
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Consider a real valued random variable X

P(sils) e Cumulative distribution function (cdf) F(x) for X:

F(x) = P(X < x)

@ To obtain the probability of falling in an interval we can do

. L . . . . the following:
Single multivariate Gaussian with mean p;, covariance matrix 3;: &

bi(x) = p(x | ) = N ), ) P(a< X < b) = iﬁ; < t;)(—) P(X < )

M-component Gaussian mixture model:

M
bi(x) = p(x | j) =D GmN(X; tjm, Zjm)
m=1
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Background: pdf The Gaussian distribution (univariate)

@ The rate of change of the cdf gives us the probability density
function (pdf), p(x):

p(x) = SF() = F(x)
F(x) = /_X p(x)dx

@ p(x) is not the probability that X has value x. But the pdf is
proportional to the probability that X lies in a small interval
centred on x.

@ Notation: p for pdf, P for probability
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@ The Gaussian (or Normal) distribution is the most common
(and easily analysed) continuous distribution

@ It is also a reasonable model in many situations (the famous
“bell curve”)

o If a (scalar) variable has a Gaussian distribution, then it has a
probability density function with this form:

1 _ _ 2
exp (x — )
2102 20°

@ The Gaussian is described by two parameters:

p(x|p, %) = N(x; p,0%) =

o the mean y (location)
o the variance o2 (dispersion)
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Plot of Gaussian distribution Properties of the Gaussian distribution

@ Gaussians have the same shape, with the location controlled
by the mean, and the spread controlled by the variance

@ One-dimensional Gaussian with zero mean and unit variance
(=0, 0% =1):

pdf of Gaussian Distribution
T T
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mean=0
variance=1
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N(x; pt,0°)
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Parameter estimation Exercise — maximum likelihood estimation (MLE)

o Estimate mean and variance parameters of a Gaussian from
data x(, x(® . x(N)

@ Use sample mean and sample variance estimates:

1 N
DL

o= (sample mean)
n=1
1N
0% = N Z(x(”) — u)? (sample variance)
n=1
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The multivariate Gaussian distribution

e The d-dimensional vector x = (xq,...,xq)" follows a
multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:

Pl 2) = e (50 1) TS )

The pdf is parameterized by the mean vector p = (1, . - ., fd
o T14

and the covariance matrix X =
0d1 O dd

@ The 1-dimensional Gaussian is a special case of this pdf

o The argument to the exponential 0.5(x — p) "7 (x — ) is
referred to as a quadratic form.

)T

ASR Lectures 4&5

Consider the log likelihood of a set of N training data points

{xM, ... x(M} being generated by a Gaussian with mean y and
variance o:
N
1 (n) _ )2
L=Inp({xV,... x"} [ po?) =5 <(X0,2M) —Ino? - '”(277)>
n=1
N
1 N N
- = m_ 2 Zne? - 2
502 ;(X 0| 5 Ino 5 In(27)

By maximising the the log likelihood function with respect to p
show that the maximum likelihood estimate for the mean is indeed

the sample mean:
N

= 1300

n=1
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Covariance matrix

@ The mean vector p is the expectation of x:

p = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

% = E[(x — p)(x — ) ]

@ X is a d X d symmetric matrix:

oij = E[(xi — pi) 5 — )] = E[(5 — py)(xi — pi)] = i

@ The sign of the covariance helps to determine the relationship
between two components:
o If x; is large when X; is large, then (x; — u;)(xj — p;) will tend
to be positive;
o If x; is small when x; is large, then (x; — p;)(x; — ;) will tend
to be negative.

ASR Lectures 4&5 19



Spherical Gaussian Diagonal Covariance Gaussian

Contour plot of p(x, x,) Contour plot of p(x, x,)

Surace pot of plx, x)

\Y
XX O B
AN
IYKX
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Full covariance Gaussian Parameter estimation of a multivariate Gaussian

distribution

Contour plot of p(x,, x;)

Surtace plotof pi, 1)

@ |t is possible to show that the mean vector fi and covariance
matrix X that maximize the likelihood of the training data are

i given by:
AT -
/I/III JAN
"”"I/”I{II":"'”%‘::::“:\‘\‘% 2
N | PR SNt
| N
LN
=52 =) - )T
n—1

@ The mean of the distribution is estimated by the sample mean
and the covariance by the sample covariance
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Maximum likelihood fit to a Gaussian

Example data
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Data in clusters (example 1)
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k-means clustering k-means example: data set

data

k-means example: initialization
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Requires a prespecified number of clusters

Guaranteed to converge (eventually)

k-means is an automatic procedure for clustering unlabelled

Clustering algorithm chooses a set of clusters with the
minimum within-cluster variance

Clustering solution is dependent on the initialisation

A
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iteration 1 (assign points to clusters)
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k-means example: iteration 1 (recompute centres)

10

k-means example: iteration 2 (recompute centres)

10

[

A

°@4,13)

*
(4.33,10)
°@9)

(66)
@45

L]
(5:4)
*
. @s7.3)
(12) (5.2)

‘e

‘78
°7.6)
L]
(10,5)

84" *
(8.75,3.75)

(10,0)

ASR Lectures 4&5

v

A
®@4.13)
*
(433, 10)
eX)
)
)
*us) ® (10,5)
‘s @ 4)$' (8242)
*
*12) G17.25) %5y
@ (10,0) .
0 5 10

ASR Lectures 4&5

34

k-means example: iteration 2 (assign points to clusters)

A
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(7.8)
5 (10,5)
0 (10,0)
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A

10

5 (10,5)

0 (10,0)
0 5 10

No changes, so converged
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Mixture model Component occupation probability

@ A more flexible form of density estimation is made up of a @ We can apply Bayes’ theorem:
linear combination of component densities: . . . .
P p(x[J)P() _  p(xIj)P()

Pl ilx) — -
(J1x) p(x) Zj"ilp(x!j)P(j)

@ The posterior probabilities P(j|x) give the probability that
component j was responsible for generating data point x

M
p(x) =3 p(x|/)P())

@ This is called a mixture model or a mixture density ) .
) N @ The P(j|x)s are called the component occupation
® p(x|j): component densities probabilities (or sometimes called the responsibilities)
® P(j): mixing parameters @ Since they are posterior probabilities:
o Generative model:
© Choose a mixture component based on P(}) M .
© Generate a data point x from the chosen component using Z P(jlx)=1
p(x|J) j=1
ASR Lectures 4&5 36 ASR Lectures 4&5 37

Parameter estimation Gaussian mixture model

@ The most important mixture model is the Gaussian Mixture
Model (GMM), where the component densities are Gaussians

e If we knew which mixture component was responsible for a e Consider a GMM, where each component Gaussian
data point: N;(x; pj, ;) has mean p; and a spherical covariance 3; = o7 |
° we would be able to assign each point unambiguously to a M M
mixture component _ . N . . 2
X) = P x|j)= P(Jj)N;(x; pj, o7l
e and we could estimate the mean for each component Gaussian p(x) Zl (J)p(x1j) Zl () J( K> 9; )
J= J=

as the sample mean (just like k-means clustering)
e and we could estimate the covariance as the sample covariance

@ But we don't know which mixture component a data point
comes from...

@ Maybe we could use the component occupation probabilities
P(jx)?
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GMM Parameter estimation when we know which

component generated the data

@ Define the indicator variable zj, = 1 if component j generated
component x(") (and 0 otherwise)

e If zj, wasn't hidden then we could count the number of
observed data points generated by j:

N
Nj=2_ 2
n=1

@ And estimate the mean, variance and mixing parameters as:

~ Zn zj”x(n)
o Szl —
J N:

J

A~ 1 N;
P(J):szjn:ﬁ
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Soft assignment

@ Estimate “soft counts” based on the component occupation
probabilities P(j [x(M):

N
Ny = > P )
n=1

@ We can imagine assigning data points to component j
weighted by the component occupation probability P( |x(”))

@ So we could imagine estimating the mean, variance and prior
probabilities as:

o 2 PG 5T P(S X))

M s PO ™) N
2 2o PG — i[> 350, PG X)X — gy 2
! > P(jx(M) Nx
. 1 N
N oy —
P(j) NZn:P(JIX )=
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EM algorithm Maximum likelihood parameter estimation

@ Problem! Recall that:
plily) = PXIDPG) _ p(xlj)P()
UM =200~ S, ol )P()

We need to know p(x|j) and P(j) to estimate the
parameters of p(j |x), and to estimate P(j)....

@ Solution: an iterative algorithm where each iteration has two
parts:

o Compute the component occupation probabilities P(j|x) using
the current estimates of the GMM parameters (means,
variances, mixing parameters) (E-step)

o Computer the GMM parameters using the current estimates of
the component occupation probabilities (M-step)

e Starting from some initialization (e.g. using k-means for the
means) these steps are alternated until convergence

@ This is called the EM Algorithm and can be shown to
maximize the likelihood

ASR Lectures 4&5

o The likelihood of a data set X = {x(1),x(2), ... x(M1 is given
by:

N N M
L= H p(x(M) = H ZP(X(")U)P(J)
n=1

n=1j=1
@ We can regard the negative log likelihood as an error function:

N
E=—-InL= —Zlnp(x("))
n=1

N M
==Y " In | > p(x"[j)P(j)
n=1 j=1

o Considering the derivatives of E with respect to the
parameters, gives expressions like the previous slide
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Example 1 fit using a GMM Peakily distributed data (Example 2)
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Example 2: component Gaussians Comments on GMMs

o GMMs trained using the EM algorithm are able to self
organize to fit a data set

@ Individual components take responsibility for parts of the data
set (probabilistically)

@ Soft assignment to components not hard assignment — “soft
clustering”

; .. . o GMMs scale very well, e.g.: large speech recognition systems
G I T R e e S can have 30,000 GMMs, each with 32 components:
sometimes 1 million Gaussian components!! And the
parameters all estimated from (a lot of) data by EM
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Back to HMMs... The three problems of HMMs

o) Working with HMMs requires the solution of three problems:
S1181

@ Likelihood Determine the overall likelihood of an observation
sequence X = (X1,...,X¢,...,XT) being generated by an
HMM.  (NB: x is used to denote x*) hereafter)

@ Decoding Given an observation sequence and an HMM,

Output distribution: determine the most probable hidden state sequence
@ Single multivariate Gaussian with mean p;, covariance matrix @ Training Given an observation sequence and an HMM, learn
3 the best HMM parameters A = {{ajx}, {b;j()}}

bi(x) = p(x | S =j) =N(x; p;, %)
@ M-component Gaussian mixture model:

M
bi(x) =p(x | S=j) =D cimN(X; tjm; Zjm)
m=1
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states

Os,

trellis

1 2 3 4 5 6 7 time
X, X, X, X, X, Xg X, observations
P(X, path;|A) = P(X|path;, \)P(path,|A)

= P(X|s0s151515252535354, \) P(505151515252535354|\)

= b1(x1)b1(x2)b1(x3)b2(x4) b2 (x5)b3(xe) b3(x7)ao1a11a11 312322323333 334
P(X|A) = Y P(X, pathj[A) ~ Irgsﬁ(_P(X,patth\)
{pathj} !

forward(backward) algorithm Viterbi algorithm
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Recursive algorithms on HMMs 1. Likelihood: The Forward algorithm

Visualize the problem as a state-time trellis
t+1

0\ lﬂ\ ()
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Goal: determine p(X | A)

Sum over all possible state sequences s;s; ... st that could
result in the observation sequence X

Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)
Hown many paths calculations in p(X | A)?

~ NxNx---N =NT N : number of HMM states
—_— .
T times T : length of observation

eg. N=3, T=20 — =~ 10"
Computation complexity for multiplication: O(2T NT)
The Forward algorithm reduces this to O(TN?)

ASR Lectures 4&5

Goal: determine p(X | A)

Sum over all possible state sequences s;s; ... st that could
result in the observation sequence X

Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

Forward probability, «.;(j): the probability of observing the
observation sequence x; ...X; and being in state j at time t:

ai(j) = p(x1,. .., %, S(t) = j | A)

ASR Lectures 4&5

1. Likelihood: how to calculate? 1. Likelihood: The Forward algorithm
: : : : : : P

53




1. Likelihood: The Forward recursion

@ Initialization

ao(sr) =

ao(j)=0 if j#s

@ Recursion
N
ar(j) =Y oe1(i)ajbi(xs) 1<j<N,1<t<T
i=1
@ Termination
N
p(X|A) =ar(se) =Y ar(i)ae
i=1

s/ initial state, sg: final state

ASR Lectures 4&5
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1. Likelihood: Forward Recursion

N
ae(j) = p(x1,. ., xe, S(t) = j | A) = Zat—l(i)aijbj(xt)
i=1

t+1
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Viterbi approximation Viterbi Recursion

@ Instead of summing over all possible state sequences, just
consider the most likely

@ Achieve this by changing the summation to a maximisation in
the recursion:

Ve(j) = mljax Vt—l(i)aijbj(xt)

@ Changing the recursion in this way gives the likelihood of the
most probable path

@ We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path

ASR Lectures 4&5

58

Vi(j) = max Vi—1(i)aibj(xt)

Likelihood of the most probable path
t—1 t t+1

Vii(k)
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Viterbi Recursion

Backpointers to the previous state on the most probable path
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Viterbi Backtrace

Backtrace to find the state sequence of the most probable path

t—1 t t+1
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2. Decoding: The Viterbi algorithm

o Initialization

1
Vo(j)=0 if j#i
bto(j) =0

@ Recursion
. N .
Ve(J) = max Ve1(i)ajbj(x)
. N .
bte(j) = argmax Vi1 (7)aybj(xt)
@ Termination
P* = Vr(sg) = mfimlx Vr(i)aie

* N .
sT = btr(qe) = arg max Vr(i)aie

ASR Lectures 4&5 61

3. Training: Forward-Backward algorithm

o Goal: Efficiently estimate the parameters of an HMM X from
an observation sequence

@ Assume single Gaussian output probability distribution

bi(x) = p(x | j) = N(x; pj, %)

@ Parameters X:
o Transition probabilities aj;:

Za;j:1
J

o Gaussian parameters for state j:
mean vector p;; covariance matrix 3;
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Viterbi Training EM Algorithm

@ If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state

@ A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding

@ Maximum likelihood estimate of aj;, if C(i — j) is the count
of transitions from J to j

_C(i =)

> Ci = k)

o Likewise if Z; is the set of observed acoustic feature vectors
assigned to state j, we can use the standard maximum
likelihood estimates for the mean and the covariance:

~ ZXEZJ' X

~

ajj

I“l‘- =
T 12

o ez )= i)'
T 2|
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Backward probabilities Backward Recursion

@ To estimate the state occupation probabilities it is useful to
define (recursively) another set of probabilities—the Backward
probabilities

ﬁt(./) = p(xt+1a S, XT | S(t) = J?A)
The probability of future observations given a the HMM s in

state j at time t
@ These can be recursively computed (going backwards in time)
o Initialisation

Br(i)=ai

e Recursion

N
Be(i) = ajbi(xes1)Bes1(j) fort=T—-1,...,1
j=1

e Termination

p(X|A) = po(l) = Zaljbj(xl)ﬁl(j) = at(sg)

ASR Lectures 4&5
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@ Viterbi training is an approximation—we would like to
consider all possible paths
@ In this case rather than having a hard state-time alignment we
estimate a probability
e State occupation probability: The probability v+(j) of
occupying state j at time t given the sequence of
observations.
Compare with component occupation probability in a GMM
@ We can use this for an iterative algorithm for HMM training:
the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')
@ Each iteration has two steps:
E-step estimate the state occupation probabilities
(Expectation)
M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)
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N
Be(d) = P(Xer1, . x7 [ S(£) = j,A) =D aybj(xe41)Ber1(J)
=

t—-1 t t+1

Bt+1( i)

Bt+1(j)

Bt+1( k)
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State Occupation Probability Re-estimation of Gaussian parameters

@ The state occupation probability ~;( ) is the probability of
occupying state j at time t given the sequence of observations
@ Express in terms of the forward and backward probabilities:

Y(J) = P(S(t) =j [ X,A) = at(J)Be(J)

recalling that p(X|A) = art(sg)
@ Since

1
aT(sE)

ar(J)Be(J) = p(x1,. .., xe, 5(t) = j | A)
pP(Xts1, ..., x7 | S(t) = j,A)
= p(X1,. oy Xty X1y, XT, S(E) = J | A)
=p(X,5(t) =j [ A)

p(X,5(t) = j [ A)

PIS() = j 1.2 = P22 0
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Re-estimation of transition probabilities Pulling it all together

@ Similarly to the state occupation probability, we can estimate
&t(i,J), the probability of being in /i at time t and j at
t + 1, given the observations:

&(i,j)=P(S(t)=1i,5(t+1)=j | X, A)
P(S(t) = i,5(t+1) = j,X|A)
p(X|A)
_ ou(7)agbj(xe1)Bera(J)
OzT(SE)

@ We can use this to re-estimate the transition probabilities

5 e &linJ)
B ED VT TNS
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@ The sum of state occupation probabilities through time for a
state, may be regarded as a “soft” count

@ We can use this “soft” alignment to re-estimate the HMM
parameters:

S ()x
HJ: t=1 /'t t

Zz—:l ’Yt(j)
2] — Z;rzl ’Yt(j)(xt — ﬂ_,)(X _ ﬁ’J)T
Zthl v:(J)
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@ lterative estimation of HMM parameters using the EM
algorithm. At each iteration
E step For all time-state pairs
© Recursively compute the forward probabilities

at(j) and backward probabilities SB:( ;)
@ Compute the state occupation probabilities

Ye(J) and &y J)

M step Based on the estimated state occupation
probabilities re-estimate the HMM parameters:
mean vectors p;, covariance matrices X; and
transition probabilities aj;

@ The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm
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Extension to a corpus of utterances Extension to Gaussian mixture model (GMM)

@ We usually train from a large corpus of R utterances

e If x{ is the tth frame of the rth utterance X" then we can

compute the probabilities (), S7(J), v¢(J) and &[( i, j)
as before

@ The re-estimates are as before, except we must sum over the
R utterances, eg:

R T .
i = Dore1 D=1 Ve (J)XE
j = R T ;

Zr:1 Zt:l 'Y{(J)

ASR Lectures 4&5

@ Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities v¢(j, m): the probability of
occupying mixture component m of state j at time t

@ We can thus re-estimate the mean of mixture component m
of state j as follows

o g el m)xe
TSl m)
And likewise for the covariance matrices (mixture models
often use diagonal covariance matrices)
@ The mixture coefficients are re-estimated in a similar way to
transition probabilities:

N Rl— T ;
D=1 =1 Ye(J 5 6)
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@ The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

@ In this case an M-component Gaussian mixture model is an
appropriate density function:

M
bi(x) = p(x | j) =D GmN (X tjm; Zjm)
m=1

Given enough components, this family of functions can model
any distribution.

@ Train using the EM algorithm, in which the component
estimation probabilities are estimated in the E-step
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@ The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

@ This can cause floating point underflow problems

@ In practice computations are performed in the log domain (in
which multiplies become adds)

@ Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians
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A note on HMM topology

485 bepss UE

left-to—right model  parallel path left-to—right model  ergodic model

A note on HMM emission probabilities

388

b(x b(xT/v\b(x

aigr az aiz 0 0 au ar a3 ais ais emISSIOH pdfs
a;1 a2 O 0 ax axs ax 0 a1 axp a3 ax ax
0 ax ax 0 O a3 as ass as1 a2 a3 a ass
0 0 as3 0 O O asm ass dal A42 A43 A44 A45
0 0 0 0 ass as1 as2 as3 asq ass Emission prob.
Continuous (density) HMM | continuous density | GMM, NN/DNN
Speech recognition:  left-to-right HMM with 3 ~ 5 states Discrete (probability) HMM | discrete probability | VQ

Speaker recognition:

ergodic HMM

Semi-continuous HMM

continuous density

tied mixture

(tied-mixture HMM)
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Summary: HMMs

@ HMMs provide a generative model for statistical speech
recognition
@ Three key problems
© Computing the overall likelihood: the Forward algorithm
@ Decoding the most likely state sequence: the Viterbi algorithm
© Estimating the most likely parameters: the EM
(Forward-Backward) algorithm
@ Solutions to these problems are tractable due to the two key °
HMM assumptions
@ Conditional independence of observations given the current
state
@ Markov assumption on the states
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