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Overview

Speech Signal Analysis for ASR

@ Features for ASR
@ Spectral analysis
@ Cepstral analysis
o Standard features for ASR: MFCCs and PLP analysis

@ Dynamic features

Reading:
o Jurafsky & Martin, sec 9.3

o P Taylor, Text-to-Speech Synthesis, chapter 12, signal
processing background chapter 10
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Speech signal analysis for ASR Speech production model

Decoded Text
(Transcription)

Acoustic
Model ’
. Search
Lexicon
Space
Language
Model

Recorded Speech

Signal
Analysis

Training
Data
A\

ASR Lectures 2&3

Nasal
Cavity

nasal cavity F1 f2

IX(N | A7 F3

i (~6dB/oct.) )

+eaBloct\_Cavity

F1 F2 (formants)

man A

lips o pharynx

teeth

[~/ larynx E|V(Q)| —12dB/oct. !

vocal folds ! ‘ H || | I

/ L »reLUlLLly Q vocal folds !

lungs E %k T !

. A T 5

Vocal Organs & Vocal Tract: -1, ‘

ASR Lectures 2&3 4



A/D conversion — Sampling

Convert analogue signals in digital form
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Acoustic Features for ASR

Sampled signal I ,,,,, I
T I T I _ [ ASR \ Acoustic feature vectors‘ Acoustic
() \ Front End / () Model

Speech signal analysis to produce a sequence of acoustic feature
vectors
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A/D conversion — Sampling (cont.)

Things to know:

e Sampling Frequency (Fs =1/Ts )

Speech Sufficient Fg
Michrophone voice (< 10kHz) 20 kHz
Telephone voice (< 4kHz) 8 kHz

@ Analogue low-pass filtering to avoid 'aliasing’
NB: the cut-off frequecy should be less than the
Nyquist frequency (= Fs/2)
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Acoustic Features for ASR

Desirable characteristics of acoustic features used for ASR:

@ Features should contain sufficient information to distinguish
between phones

e good time resolution (10ms)
e good frequency resolution (~ 20 channels)

Be separated from Fy and its harmonics
Be robust against speaker variation

Be robust agains noise or channel distortions

Have good “pattern recognition characteristics”
o low feature dimension
o features are independent of each other
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MFCC-based front end for ASR Pre-emphasis and spectral tilt

X[m]
X(t) —><A/D conversion>—>< Preempahsis H Window )— DFT @ Pre-emphasis increases the magnitude of higher frequencies in
x[n] x’[n] . . .
X[ the speech signal compared with lower frequencies
Energy .
N Mel filterbank e SpeCtral Titt

o The speech signal has more energy at low frequencies (for
voiced speech)
( log( ) ) e This is due to the glottal source

1Y, [k']P
4

L oz @ Pre-emphasis (first-order) filter boosts higher frequencies:
Transform il e features
- x'[n] = x[n] — ax[n — 1] 0.95 < a < 0.99
] Aydjl, Ae
oui] AAYil, Ade
.~ Acoustic \
" Model
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@ The speech signal is constantly changing (non-stationary)
@ Signal processing algorithms usually assume that they the
u e ‘ signal is stationary
W s 1 @ Piecewise stationarity: model speech signal as a sequence of
frames (each assumed to be stationary)
ol P s e Windowing: multiply the full waveform s[n] by a window

Sound pressure level (dB/Hz)
Sound pressure level (dB/Hz)

b w(n] (in time domain):
) i x[n] = w(n]s[n]
Frequency (Hz) 200 Frequency (Hz) 2200 . . .
- e Simply cutting out a short segment (frame) from s[n] is a
Vowel /aa/ - time slice of the spectrum rectangular window — causes discontinuities at the edges of
the segment
(Jurafsky & Martin, fig. 9.9) o Instead, a tapered window is usually used

e.g. Hamming (o = 0.46164) or Hanning (o = 0.5) window

-1

2nl
wl[l] = (1 — a) — acos (L T ) L : window width

ASR Lectures 2&3 11 ASR Lectures 2&3 12



Effect of windowing — time domain Effect of windowing — frequency domain
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gj L X | — ]
g oot 1 @ Purpose: extracts spectral information from a windowed
2 0.2 f B . .
B ool i signal (i.e. how much energy at each frequency band)
o . . . .
ol @ Input: windowed signal x[ni],...,x[n + L — 1] (time domain)
0 0.2 0.4 0.6 0.8 1 0 50 100 150 200
g5 L ormatieed f‘eqi““l[ff"“ os e @ Output: a complex number X[k] for each of N frequency
L Rectangle i L Hanning ] . .
g ol I bands representing magnitude and phase for the kth frequency
a 0.2 B A 0.2 H
il I component (frequency domain)
[ I @ Discrete Fourier Transform (DFT):
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Windowing and spectral analysis Wide-band and narrow-band spectrograms

e Window the signal x[n] into
frames x;[m] and apply
Fourier Transform to each
segment.

o Short frame width:
wide-band,
high time resolution,
low frequency resolution
e Long frame width:
narrow-band,
low time resolution,
high frequency resolution

e For ASR:

o frame width ~ 20ms
o frame shift ~ 10ms
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Short-time spectral analysis DFT Spectrum

windowing




e Equally-spaced frequency bands — but human hearing less
sensitive at higher frequencies (above ~ 1000Hz)

Physical quality Perceptual quality

. . . Intensity Loudness

@ The estimated power spectrum contains harmonics of FO0, Fundamental frequenc Pitch
which makes it difficult to estimate the envelope of the Spectralqshapz Timbre
spectrum | | Onset/offset time Timing
12r Log IX(w)l | Phase difference in binaural hearing Location

Technical terms

@ equal-loudness contours

4 \ \ \ \
0 50 100 150 200 250

@ masking
_ _ _ @ auditory filters (critical-band filters)
@ Frequency bins of STFT are highly correlated each other, i.e.

power spectrum representation is highly redundant ® critical bandwidth
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Equal loudness contour Nonlinear frequency scaling

. Human hearing is less sensitive to higher frequencies — thus
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Mel Filterbank Log Energy

@ Apply a mel-scale filter bank to DFT power spectrum to
obtain mel-scale power spectrum

@ Each filter collects energy from a number of frequency bands
in the DFT

@ Linearly spaced < 1000 Hz, logarithmically spaced > 1000 Hz

DFT(STFT) power spectrum

— Frequency bins

Triangular band-pass filters ‘

I 1 ’ . e - ‘—‘V,/“/,

Mel-scale power spectrum
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DFT Spectrum Features for ASR Cepstral Analysis

@ Equally-spaced frequency bands — but human hearing less
sensitive at higher frequencies (above ~ 1000Hz)

@ The estimated power spectrum contains harmonics of FO,
which makes it difficult to estimate the envelope of the
spectrum

T T
12 - Log IX(w)l — 7

\ \ \ \
0 50 100 150 200 250

@ Frequency bins of STFT are highly correlated each other, i.e.
power spectrum representation is highly redundant
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@ Compute the log magnitude squared of each Mel filter bank
output

o Taking the log compresses the dynamic range

e Human sensitivity to signal energy is logarithmic — i.e.
humans are less sensitive to small changes in energy at high
energy than small changes at low energy

o Log makes features less variable to acoustic coupling variations

e Removes phase information — not important for speech
recognition (not everyone agreeswith this)
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@ Source-Filter model of speech production

e Source: Vocal cord vibrations create a glottal source waveform

o Filter: Source waveform is passed through the vocal tract:
position of tongue, jaw, etc. give it a particular shape and
hence a particular filtering characteristic

@ Source characteristics (Fp, dynamics of glottal pulse) do not
help to discriminate between phones

The filter specifies the position of the articulators

@ ... and hence is directly related to phone discrimination

Cepstral analysis enables us to separate source and filter
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26

28




Cepstral Analysis The Cepstrum

Split power spectrum into spectral envelope and Fy harmonics. @ Cepstrum obtained by applying inverse DFT to log magnitude
T — ] ) spectrum (may be mel-scaled
0 YT Log Spectrum (freq domain) ( , , )
5 i _ @ Cepstrum is time-domain (we talk about quefrency)
o i |l Inverse Fourier Transform
B B _ _ ® Inverse DFT:
e Cepstrum (tlrpe domain) (quef;ency) y
0 ] |  Liftering to get low/high part _ T _
{3 1 (lifter: filter used in cepstral domain) yelk] = Z log(|Ye(m)][) cos (k(m o O'S)M) k=0,....J
0.1 . . —
%0 S0 100 150 200 250 U« Fourier Transform m=1
2 e — 1 Smoothed-spectrum (freq. domain) @ Since log power spectrum is real and symmetric the inverse
1 1 [low-part of cepstrum] DFT is equivalent to a discrete cosine transform
e e m
S ke — 1 | og spectrum
o 1 .
af 1 [high-part of cepstrum]
3 |
00 50 100 150 200 250
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MFCCs PLP — Perceptual Linear Prediction
@ Smoothed spectrum: transform to cepstral domain, truncate, @ PLP (Hermansky, JASA 1990)
transform back to spectral domain @ Uses equal loudness
e Mel-frequency cepstral coefficients (MFCCs): use the cepstral SPEECH pre-emphasis and cube-root
coefficients directly Fourt compression (motivated by
ourier
o Widely used as acoustic features in HMM-based ASR Transform perceptual re_5“|t5) rather than
o First 12 MFCCs are often used as the feature vector (removes Magnitude log compression
. . quare ! '
FO information) _ 3 ' ‘ @ Uses linear predictive
o Less correlated than spectral features — easier to model than Cearatand NY\/X\ auto-regressive modelling to
spectral features . . : I : obtain cepstral coefficients
e Very compact representation — 12 features describe a 20ms Equal Loudness | '
frame of data reemphasis | @ PLP has been shown to lead to
e For standard HMM-based systems, MFCCs result in better IEI)%%SAgs?
ASR performance than filter bank or spectrogram features Coz‘”press'on o slightly better ASR
e MFCCs are not robust against noise Fourier accuracy
Transform . )
) o e slightly better noise
Linear Prediction
robustness
PLP compared with MFCCs
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Dynamic features Estimating dynamic features

@ Speech is not constant frame-to-frame, so we can add features
to do with how the cepstral coefficients change over time

o Ax, A%« are delta features (dynamic features / time
derivatives) c(t)

@ Simple calculation of delta features d(t) at time t for cepstral
feature c(t) (e.g. y:[j]):

d(t) = c(t+1) ; c(t—1)

@ More sophisticated approach estimates the temporal derivative
by using regression to estimate the slope (typically using 4
frames each side)

@ “Standard” ASR features are 39 dimensions:

e 12 MFCCs, and energy

e 12 A MFCCs, A energy
e 12 A% MFCCs, A? energy
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Feature Transforms Summary: Speech Signal Analysis for ASR
@ Orthogonal transformation (orthogonal bases) @ Good characteristics of ASR features
o DCT (di'_scrgte cosine transform) _ @ MFCCs - mel frequency cepstral coefficients
e PCA (principal component analysis) o Short-time DFT analysis
@ Transformation based on the bases that maximises the o Mel filter bank
separability between classes. o Log magnitude squared
o LDA (linear discriminant analysis) / Fisher's linear discrminant o Inverse DFT (DCT)
o HLDA (heteroscedastic linear discriminant analysis) o Use first few (12) coefficients

@ Delta features

@ 39-dimension feature vector:
MFCC-12 + energy; + Deltas; + Delta-Deltas
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