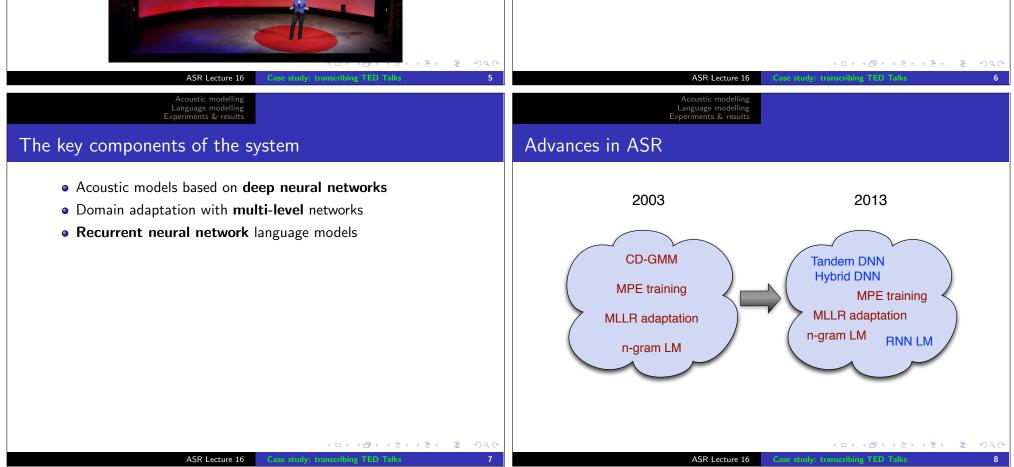


The TED lecture task

The TED lecture "ASR task" is defined for the IWSLT evaluation campaign. The task consists of several development/test sets, each containing 8-11 single-speaker talks of around 10 minutes' duration. All talks are pre-segmented into utterances.

Language modelling

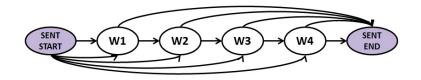
Experiments & results


Characteristics of the task

- Generally clear, planned speech directed at an audience
- Single speaker per talk
- Training data is readily available on the web

Language modelling

Experiments & results


• A wide vocabulary is used

Language modelling Experiments & results

Preparing the training data

- 813 talks downloaded from the TED website, along with transcriptions made by the online community.
- We need to automatically align the text to the speech.
- Use a Viterbi alignment with the option to start and end at any word.

• After stripping out the silence, we retrieve 143 hours of speech data available for model training.

ASR Lecture 16

Language modelling

Basic acoustic models

First, need a standard cross-word triphone HMM-GMM system:

Language modelling

- PLP acoustic features with first, second and third deltas (52 dimensions), rojected to 39 dimensions with an HLDA transform
- The acoustic features are normalised for mean and variance across the talks
- Standard left-to-right HMM topology, with three emitting states per phone
- 10,000 tied HMM-states, modelling clustered cross-word triphones

ASR Lecture 16

Language model

• 190.000 Gaussians in total

Domain adaptation

Tandem vs Hybrid systems: recap

Tandem:

- Neural networks are used to derive features for training data, which are augmented with the standard acoustic features and used to train GMMs.
- Can use decorrelated posterior features (eg over monophones), or bottleneck features

Hybrid:

- Neural networks used to generated posterior probabilities over states, used as likelihoods in decoder, scaled by state priors.
- In modern systems, we model the probabilities of tied triphone states.

We always use **deep** neural networks with RBM pre-training.

Telephone Meeting speech speech

- If we are starting out on a new speech recognition task, it may be helpful to use data that we already have from other domains.
- But speech varies a lot in style, accent, and environmental conditions - how can we use out-of-domain data without harming performance?

▲御▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

11

200

(비) (귀) (문) (문)

∃ 2000

10

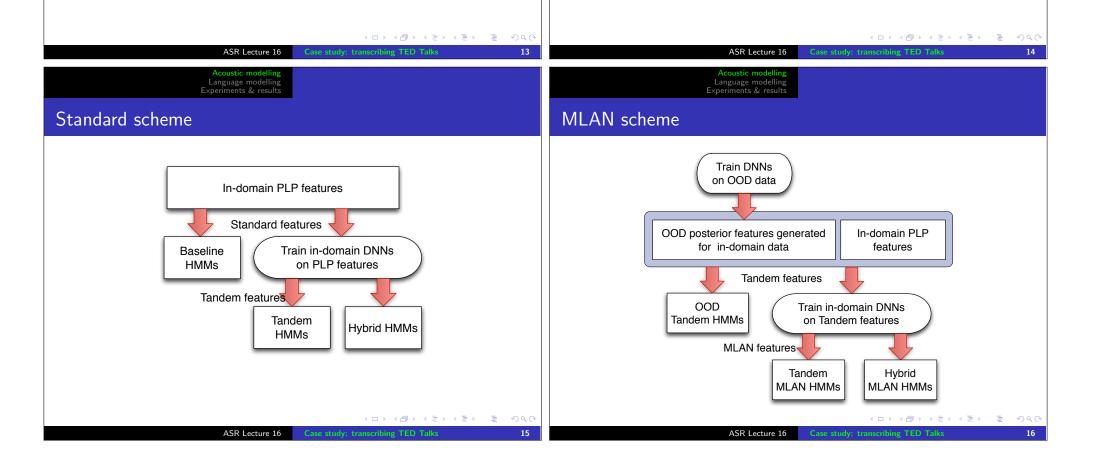
Acoustic modelling Language modelling Experiments & results

MAP adaptation

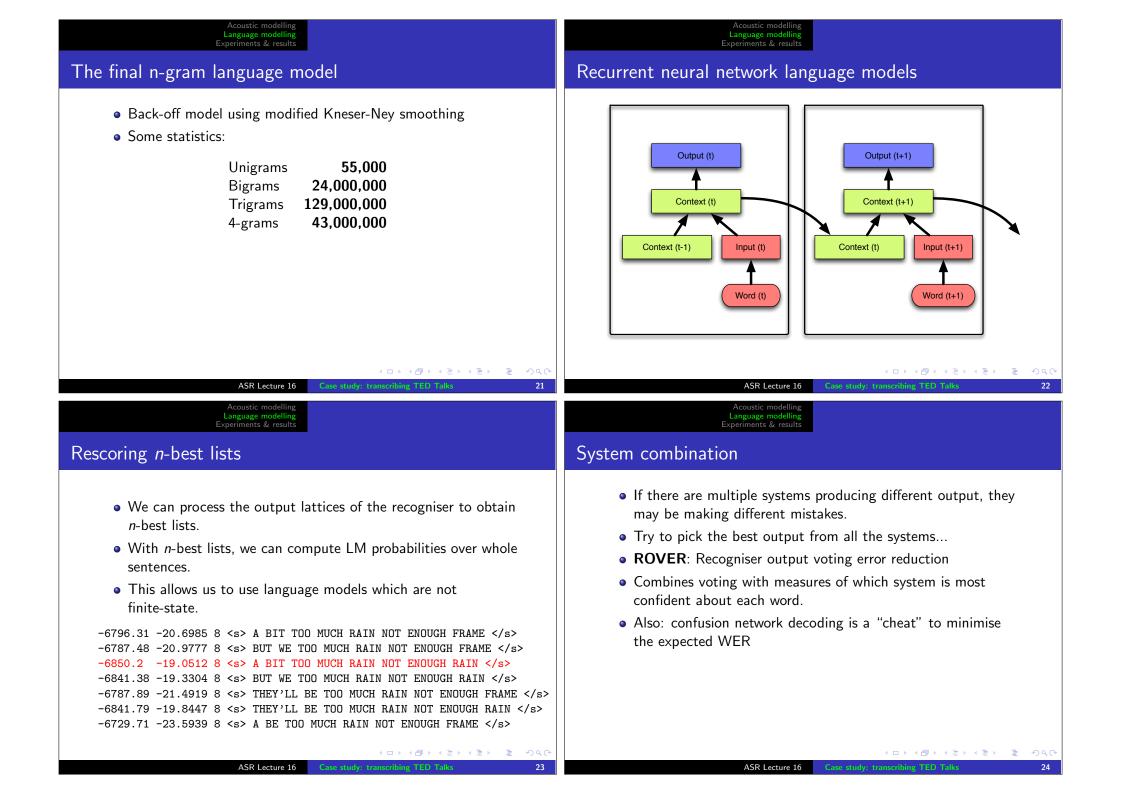
We can start with a model trained on another domain and adapt it to the new domain using MAP (See lecture 10):

$$\hat{\mu}_j = \frac{\tau \mu_j^{\mathsf{OD}} + \sum_t \gamma_j(t) x_t}{\tau + \sum_t \gamma_j(t)}$$

This usually works better for domain adaptation (where we are building a completely new system) than for speaker adaptation, because there is likely to be wider phonetic coverage.


Domain adaptation with DNNs

- Features derived from neural networks are known to provide a degree of domain-independence.
- Features trained on one domain may be used add discriminative ability to another domain (perhaps one where data is limited)
 - can carry out additional training iterations...


Language modelling

Experiments & results

- ... but pre-training already provides a degree of regularisation when training data is limited
- in tandem framework, retrain GMMs
- Multi-level adaptive networks (MLAN): use a second DNN to discriminatively select which OOD features are most effective in the new domain.

Acoustic modelling Language modelling Experiments & results Feature space adaptation	Acoustic modelling Language modelling Experiments & results		
 How to enable the hybrid system to benefit from speaker adaptation? (Particularly important in the when there is a lot of data for each speaker) The simplest method is to perform feature-space adaptation on the input acoustic features Estimate a single CMLLR transform for each speaker using the baseline GMMs. Retrain the hybrid DNNs on the speaker-normalised feature space. 	 Language models In summary: Decoding is performed with a trigram model Lattices are rescored with a 4-gram model We later score complete sentences with a recurrent neural network model Models are trained on the transcriptions of TED talks, with selected out-of-domain data 		
ASR Lecture 16 Case study: transcribing TED Talks 17 Acoustic modelling Language modelling Experiments & results Training data	ASR Lecture 16 Case study: transcribing TED Talks 18 Acoustic modelling Language modelling Experiments & results Language model adapation		
The best language model was trained at NICT in Japan, using: Corpus Tokens In-domain TED Talks 2.4M Out-of- News Commentary v7 4.5M domain English Gigaword 5th ed. 2.7G	 There is a relatively small amount of in-domain data. We need to select out-of-domain text that matches the TED domain. Use cross-entropy difference metric which biases towards sentences that are both like the in-domain corpus D_I and unlike the average of the out-of-domain: D_s = {s H_I(s) - H_O(s) < τ}, s ∈ D_O The threshold τ is empirically set to minimize the perplexity of the development set 		
イロトイラトイミト ミージへ() ASR Lecture 16 Case study: transcribing TED Talks 19	イロトイラトイミトマションのの ASR Lecture 16 Case study: transcribing TED Talks 20		

Acoustic modelling Language modelling Experiments & results	Acoustic modelling Language modelling Experiments & results			
The complete system	Tandem and hybrid adapted systems on TED			
<text><list-item><list-item></list-item></list-item></text>	System Dev WER (%) PLP 31.7 + SAT 25.3 + MPE 20.3 Baseline tandem 23.3 + SAT 19.7 + MPE 17.9 Baseline hybrid 20.3 + SAT 19.7 + MPE 17.9 Baseline hybrid 20.3 + SAT 17.6 Tandem MLAN 20.6 + SAT 18.1 + MPE 16.4 Hybrid MLAN 17.8 + SAT 16.4			
ASR Lecture 16 Case study: transcribing TED Talks: 25 Acoustic modelling Language modelling Experiments & results	ASR Lecture 16 Case study: transcribing TED Talks 26 Acoustic modelling Language modelling Experiments & results			
Increasing the number of layers in the DNN	Language model experiments			
$\int_{Number of hidden layers}^{23}$	SystemDev WER(%)Tandem MLAN14.4+ 4gram13.8+ fRNN12.8Hybrid MLAN14.4+ 4gram13.5+ fRNN12.7ROVER combination13.4+ 4gram12.7+ fRNN11.9+ tuning11.7			

27

Acoustic model

Language modelling Experiments & results

Results of 2012 evaluation

System	tst2011	tst2012		
FBK	15.4	16.8		
RWTH	13.4	13.6		
UEDIN	12.4	14.4		
KIT-NAIST	12.0	12.4		
MITLL	11.1	12.4		
NICT	10.9	12.1		
NICT-UEDIN systems	tst2011	tst2012		
Tandem $MLAN + fRNN$	10.2	11.4		
Hybrid MLAN $+$ fRNN	10.3	11.3		
ROVER combination	9.3	10.3		
< ロ > < 団 > < 注				
ASR Lecture 16 Case study: transcribing TED Talks				

Some conclusions

- The capabilities of speech recognition have improved a lot in the past few years
- Advances in neural networks and increases in computing power have helped a lot

ASR Lecture 16

• Now is an exciting time to be involved in speech recognition research!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

30

Acoustic mode Language modelling Experiments & results

References

- M. Federico, M. Cettolo, L. Bentivogli, M. Paul, and S. Stüker, "Overview of the IWSLT 2012 evaluation campaign," in Proc. of the 9th International Workshop on Spoken Language Translation, 2012.
- H. Yamamoto, Y. Wu, C.-L. Huang, X. Lu, P. Dixon, S. Matsuda, C. Hori, and H. Kashioka, "The NICT ASR system for the IWSLT2012," in Proc. IWSLT, 2012.
- E. Hasler, P. Bell, A. Ghoshal, B. Haddow, P. Koehn, F. McInnes, S. Renals, and P. Swietojanski, "The UEDIN systems for the IWSLT 2012 evaluation," in Proc. IWSLT, 2012.
- P. Bell, P. Swietojanski, and S. Renals, "Multi-level adaptive networks in tandem and hybrid ASR systems," in Proc. ICASSP, 2013, to appear.
- T. Mikolov, M. Karafiát, L. Burget, J. Černokcý, and S. Khudanpur, "Recurrent neural network based language model," in Proc. Interspeech, 2010.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

31