
Abstract

Words: Pronunciations and Language Models

Steve Renals

Automatic Speech Recognition- ASR Lecture 8 11 February 2013

HMM Speech Recognition

ASR Lecture 8
Words: Pronunciations and Language Models
2

Out-of-vocabulary (OOV) rate

- OOV rate: percent of word tokens in test data that are not contained in the ASR system dictionary
- Training vocabulary requires pronunciations for all words in training data (since training requires an HMM to be constructed for each training utterance)
- Select the recognition vocabulary to minimize the OOV rate (by testing on development data)
- Recognition vocabulary may be different to training vocabulary
- Empirical result: each OOV word results in 1.5-2 extra errors (>1 due to the loss of contextual information)

Multilingual aspects

- Many languages are morphologically richer than English: this has a major effect of vocabulary construction and language modelling
- Compounding (eg German): decompose compund words into constituent parts, and carry out pronunciation and language modelling on the decomposed parts
- Highly inflected languages (eg Arabic, Slavic languages): specific components for modelling inflection (eg factored language models)
- Inflecting and compounding languages (eg Finnish)
- All approaches aim to reduce ASR errors by reducing the OOV rate through modelling at the morph level; also addresses data sparsity

Vocabulary size for different languages

M. Creutz et al, "Morph-based speech recognition and modeling OOV words across languages", ACM Tran Speech and Language Processing, 5(1), art. 3. http://doi.acm.org/10.1145/1322391.1322394

OOV Rate for different languages

[^0] Speech and Language Processing, 5(1), art. 3. http://doi.acm.org/10.1145/1322391.1322394

Single and multiple pronunciations

- Words may have multiple pronunciations:
(1) Accent, dialect: tomato, zebra global changes to dictionary based on consistent pronunciation variations
(2) Phonological phenomena: handbag/ h ae mb ae g I can't stay / [ah k ae n s t ay]
(0) Part of speech: project, excuse
- This seems to imply many pronunciations per word, including:
(1) Global transform based on speaker characteristics
(2) Context-dependent pronunciation models, encoding of phonological phenomena
- BUT state-of-the-art large vocabulary systems average about 1.1 pronunciations per word: most words have a single pronunciation

Consistency vs Fidelity

- Empirical finding: adding pronunciation variants can result in reduced accuracy
- Adding pronunciations gives more "flexibility" to word models and increases the number of potential ambiguities-more possible state sequences to match the observed acoustics
- Speech recognition uses a consistent rather than a faithful representation of pronunciations
- A consistent representation requires only that the same word has the same phonemic representation (possibly with alternates): the training data need only be transcribed at the word level
- A faithful phonemic representation requires a detailed phonetic transcription of the training speech (much too expensive for large training data sets)

Mathematical framework

HMM Framework for speech recognition. Let W be the universe of possible utterances, and X be the observed acoustics, then we want to find:

$$
\begin{aligned}
W^{*} & =\arg \max _{W} P(W \mid X) \\
& =\arg \max _{W} \frac{P(X \mid W) P(W)}{P(X)} \\
& =\arg \max _{W} P(X \mid W) P(W)
\end{aligned}
$$

Words are composed of a sequence of HMM states Q :

$$
\begin{aligned}
W^{*} & =\arg \max _{W} P(X \mid Q, W) P(Q, W) \\
& \simeq \arg \max _{W} \sum_{Q} P(X \mid Q) P(Q \mid W) P(W) \\
& \simeq \arg \max _{W} \max _{Q} P(X \mid Q) P(Q \mid W) P(W)
\end{aligned}
$$

Language modelling

- Basic idea The language model is the prior probability of the word sequence $P(W)$
- Use a language model to disambiguate between similar acoustics when combining linguistic and acoustic evidence never mind the nudist play / never mind the new display
- Use hand constructed networks in limited domains

Finite-state network

- typically hand-written
- does not have a wide coverage or robustness

Statistical language models

- For use in speech recognition a language model must be: statistical, have wide coverage, and be compatible with left-to-right search algorithms
- Only a few grammar-based models have met this requirement (eg Chelba and Jelinek, 2000), and do not yet scale as well as simple statistical models
- n-grams are (still) the state-of-the-art language model for ASR
- Unsophisticated, linguistically implausible
- Short, finite context
- Model solely at the shallow word level
- But: wide coverage, able to deal with "ungrammatical" strings, statistical and scaleable
- Probability of a word depends only on the identity of that word and of the preceding $n-1$ words. These short sequences of n words are called n-grams.

Bigram language model

- Word sequence $\mathbf{W}=w_{1}, w_{2}, \ldots w_{M}$

$$
\begin{aligned}
P(\mathbf{W})=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P(& \left.w_{3} \mid w_{1}, w_{2}\right) \\
& \ldots P\left(w_{M} \mid w_{1}, w_{2}, \ldots w_{M-1}\right)
\end{aligned}
$$

- Bigram approximation-consider only one word of context:

$$
P(\mathbf{W}) \simeq P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{2}\right) \ldots P\left(w_{M} \mid w_{M-1}\right)
$$

- Parameters of a bigram are the conditional probabilities $P\left(w_{i} \mid w_{j}\right)$
- Maximum likelihood estimates by counting

$$
P\left(w_{i} \mid w_{j}\right) \sim \frac{c\left(w_{j}, w_{i}\right)}{c\left(w_{j}\right)}
$$

where $c\left(w_{j}, w_{i}\right)$ is the number of observations of w_{j} followed by w_{i}, and $c\left(w_{j}\right)$ is the number of observations of w_{j} (irrespective of what follows)

The zero probability problem

- Maximum likelihood estimation is based on counts of words in the training data
- If a n-gram is not observed, it will have a count of 0 -and the maximum likelihood probability estimate will be 0
- The zero probability problem: just because something does not occur in the training data does not mean that it will not occur
- As n grows larger, so the data grow sparser, and the more zero counts there will be
- Solution: smooth the probability estimates so that unobserved events do not have a zero probability
- Since probabilities sum to 1 , this means that some probability is redistributed from observed to unobserved n-grams

Bigram network

- n-grams can be represented as probabilistic finite state networks
- only some arcs (and nodes) are shown for clarity: in a full model there is an arc from every word to every word
- note the special start and end sentence probabilities

Smoothing language models

- What is the probability of an unseen n-gram?
- Add-one smoothing: add one to all counts and renormalize.
- "Discounts" non-zero counts and redistributes to zero counts
- Since most n -grams are unseen (for large n more types than tokens!) this gives too much probability to unseen n -grams (discussed in Manning and Schütze)
- Absolute discounting: subtract a constant from the observed (non-zero count) n-grams, and redistribute this subtracted probability over the unseen n-grams (zero counts)
- Kneser-Ney smoothing: family of smoothing methods based on absolute discounting that are at the state of the art (Goodman, 2001)

Backing off

- How is the probability distributed over unseen events?
- Basic idea: estimate the probability of an unseen n-gram using the ($\mathrm{n}-1$)-gram estimate
- Use successively less context: trigram \rightarrow bigram \rightarrow unigram
- Back-off models redistribute the probability "freed" by discounting the n -gram counts
- For a bigram

$$
\begin{aligned}
P\left(w_{i} \mid w_{j}\right) & =\frac{c\left(w_{j}, w_{i}\right)-D}{c\left(w_{j}\right)} \quad \text { if } c\left(w_{j}, w_{i}\right)>c \\
& =P\left(w_{i}\right) b_{w_{j}} \quad \text { otherwise }
\end{aligned}
$$

c is the count threshold, and D is the discount. $b_{w_{j}}$ is the backoff weight required for normalization

Practical language modelling

- Work in log probabilities
- The ARPA language model format is commonly used to store n-gram language models (unless they are very big)
- Many toolkits: SRILM, IRSTLM, KenLM, Cambridge-CMU toolkit, ...
- Some research issues:
- Advanced smoothing
- Adaptation to new domains
- Incorporating topic information
- Long-distance dependencies
- Distributed representations

Interpolation

- Basic idea: Mix the probability estimates from all the estimators: estimate the trigram probability by mixing together trigram, bigram, unigram estimates
- Simple interpolation

$$
\begin{aligned}
& \hat{P}\left(w_{n} \mid w_{n-2}, w_{n-1}\right)= \\
& \quad \lambda_{3} P\left(w_{n} \mid w_{n-2}, w_{n-1}\right)+\lambda_{2} P\left(w_{n} \mid w_{n-1}\right)+\lambda_{1} P\left(w_{n}\right)
\end{aligned}
$$

With $\sum_{i} \lambda_{i}=1$

- Interpolation with coefficients conditioned on the context

$$
\begin{aligned}
& \hat{P}\left(w_{n} \mid w_{n-2}, w_{n-1}\right)= \\
& \quad \lambda_{3}\left(w_{n-2}, w_{n-1}\right) P\left(w_{n} \mid w_{n-2}, w_{n-1}\right)+ \\
& \quad \lambda_{2}\left(w_{n-2}, w_{n-1}\right) P\left(w_{n} \mid w_{n-1}\right)+\lambda_{1}\left(w_{n-2}, w_{n-1}\right) P\left(w_{n}\right)
\end{aligned}
$$

- Set λ values to maximise the likelihood of the interpolated language model generating a held-out corpus (possible to use EM to do this)

ASR Lecture 8 Words: Pronunciations and Language Models

References

- Jurafsky and Martin, chapter 4
- Fosler-Lussier (2003) - pronunciation modelling tutorial
- Hain (2002) - implicit pronunciation modelling by context-dependent acoustic models
- Gotoh and Renals (2003) - language modelling tutorial (and see refs within)
- Good coverage of n-gram models in Manning and Schütze (1999)
- Jelinek (1991) - review of early attempts to go beyond n-grams
- Chelba and Jelinek (2000) - example of a probabilistic grammar-based language model
- Goodman (2001) - state-of-the-art smoothing for n-grams

[^0]: M. Creutz et al, "Morph-based speech recognition and modeling OOV words across languages", ACM Trans

