Pronunciation dictionary

- Words and their pronunciations provide the link between sub-word HMMs and language models
- Written by human experts
- Typically based on phones
- Constructing a dictionary involves
 - Selection of the words in the dictionary—want to ensure high coverage of words in test data
 - Representation of the pronunciation(s) of each word
- Explicit modelling of pronunciation variation

Out-of-vocabulary (OOV) rate

- OOV rate: percent of word tokens in test data that are not contained in the ASR system dictionary
- Training vocabulary requires pronunciations for all words in training data (since training requires an HMM to be constructed for each training utterance)
- Select the recognition vocabulary to minimize the OOV rate (by testing on development data)
- Recognition vocabulary may be different to training vocabulary
- Empirical result: each OOV word results in 1.5–2 extra errors (>1 due to the loss of contextual information)
Multilingual aspects

- Many languages are morphologically richer than English: this has a major effect of vocabulary construction and language modelling
- Compound (e.g., German): decompose compound words into constituent parts, and carry out pronunciation and language modelling on the decomposed parts
- Highly inflected languages (e.g., Arabic, Slavic languages): specific components for modelling inflection (e.g., factored language models)
- Inflecting and compounding languages (e.g., Finnish)
- All approaches aim to reduce ASR errors by reducing the OOV rate through modelling at the morph level; also addresses data sparsity

Vocabulary size for different languages

M. Creutz et al., “Morph-based speech recognition and modeling OOV words across languages”, ACM Trans
Speech and Language Processing, 5(1), art. 3. http://doi.acm.org/10.1145/1322391.1322394

OOV Rate for different languages

Single and multiple pronunciations

- Words may have multiple pronunciations:
 - Accent, dialect: tomato, zebra
 - global changes to dictionary based on consistent pronunciation variations
 - Phonological phenomena: handbag/ h ae m b ae g
 I can’t stay / [ah k ae n s t ay]
 - Part of speech: project, excuse
- This seems to imply many pronunciations per word, including:
 - Global transform based on speaker characteristics
 - Context-dependent pronunciation models, encoding of phonological phenomena
- **BUT** state-of-the-art large vocabulary systems average about 1.1 pronunciations per word: most words have a single pronunciation
Consistency vs Fidelity

- **Empirical finding**: adding pronunciation variants can result in reduced accuracy.
- Adding pronunciations gives more “flexibility” to word models and increases the number of potential ambiguities—more possible state sequences to match the observed acoustics.
- Speech recognition uses a **consistent** rather than a **faithful** representation of pronunciations.
- A consistent representation requires only that the same word has the same phonemic representation (possibly with alternates); the training data need only be transcribed at the word level.
- A faithful phonemic representation requires a detailed phonetic transcription of the training speech (much too expensive for large training data sets).

Modelling pronunciation variability

- State-of-the-art systems absorb variations in pronunciation in the acoustic models.
- Context-dependent acoustic models may be thought of as giving broad class representation of word context.
- Cross-word context dependent models can implicitly represent cross-word phonological phenomena.
- Hain (2002): a carefully constructed single pronunciation dictionary (using most common alignments) can result in a more accurate system than a multiple pronunciation dictionary.

Mathematical framework

HMM Framework for speech recognition. Let \(W \) be the universe of possible utterances, and \(X \) be the observed acoustics, then we want to find:

\[
W^* = \text{arg max}_{W} P(W | X)
\]

\[
= \text{arg max}_{W} \frac{P(X | W)P(W)}{P(X)}
\]

\[
= \text{arg max}_{W} P(X | W)P(W)
\]

Words are composed of a sequence of HMM states \(Q \):

\[
W^* = \text{arg max}_{W} P(X | Q, W)P(Q, W)
\]

\[
\approx \text{arg max}_{W} \sum_{Q} P(X | Q)P(Q | W)P(W)
\]

\[
\approx \text{arg max}_{W} \max_{Q} P(X | Q)P(Q | W)P(W)
\]

Three levels of model

- **Acoustic model** \(P(X | Q) \)
 Probability of the acoustics given the phone states: context-dependent HMMs using state clustering, phonetic decision trees, etc.

- **Pronunciation model** \(P(Q | W) \)
 Probability of the phone states given the words; may be as simple a dictionary of pronunciations, or a more complex model.

- **Language model** \(P(W) \)
 Probability of a sequence of words. Typically an \(n \)-gram.
Language modelling

- **Basic idea** The language model is the prior probability of the word sequence $P(W)$
- Use a language model to disambiguate between similar acoustics when combining linguistic and acoustic evidence.
- *never mind the nudist play / never mind the new display*
- Use hand constructed networks in limited domains

Statistical language models

- For use in speech recognition a language model must be:
 - Statistical, have wide coverage, and be compatible with left-to-right search algorithms.
 - Only a few grammar-based models have met this requirement (e.g. Chelba and Jelinek, 2000), and do not yet scale as well as simple statistical models.
- **n-grams** are (still) the state-of-the-art language model for ASR:
 - Unsophisticated, linguistically implausible
 - Short, finite context
 - Model solely at the shallow word level
 - But: wide coverage, able to deal with “ungrammatical” strings, statistical and scaleable
- Probability of a word depends only on the identity of that word and of the preceding $n-1$ words. These short sequences of n words are called n-grams.

Finite-state network

- Typically hand-written
- Does not have a wide coverage or robustness
Bigram language model

- Word sequence $\mathbf{W} = w_1, w_2, \ldots, w_M$
- $P(\mathbf{W}) = P(w_1)P(w_2 | w_1)P(w_3 | w_1, w_2) \ldots P(w_M | w_1, w_2, \ldots, w_{M-1})$
- Bigram approximation—consider only one word of context:

 $$P(\mathbf{W}) \approx P(w_1)P(w_2 | w_1)P(w_3 | w_2) \ldots P(w_M | w_{M-1})$$

- Parameters of a bigram are the conditional probabilities $P(w_i | w_j)$
- Maximum likelihood estimates by counting:

 $$P(w_i | w_j) \sim \frac{c(w_j, w_i)}{c(w_j)}$$

 where $c(w_j, w_i)$ is the number of observations of w_j followed by w_i, and $c(w_j)$ is the number of observations of w_j (irrespective of what follows)

Bigram network

- n-grams can be represented as probabilistic finite state networks
- only some arcs (and nodes) are shown for clarity: in a full model there is an arc from every word to every word
- note the special start and end sentence probabilities

The zero probability problem

- Maximum likelihood estimation is based on counts of words in the training data
- If a n-gram is not observed, it will have a count of 0—and the maximum likelihood probability estimate will be 0
- The zero probability problem: just because something does not occur in the training data does not mean that it will not occur
- As n grows larger, so the data grow sparser, and the more zero counts there will be
- Solution: smooth the probability estimates so that unobserved events do not have a zero probability
- Since probabilities sum to 1, this means that some probability is redistributed from observed to unobserved n-grams

Smoothing language models

- What is the probability of an unseen n-gram?
- Add-one smoothing: add one to all counts and renormalize.
 - “Discounts” non-zero counts and redistributes to zero counts
 - Since most n-grams are unseen (for large n more types than tokens!) this gives too much probability to unseen n-grams (discussed in Manning and Schütze)
- Absolute discounting: subtract a constant from the observed (non-zero count) n-grams, and redistribute this subtracted probability over the unseen n-grams (zero counts)
- Kneser-Ney smoothing: family of smoothing methods based on absolute discounting that are at the state of the art (Goodman, 2001)
Backing off

- **How** is the probability distributed over unseen events?
- **Basic idea**: estimate the probability of an unseen n-gram using the (n-1)-gram estimate
- Use successively less context: trigram → bigram → unigram
- Back-off models redistribute the probability “fused” by discounting the n-gram counts
- For a bigram
 \[
 P(w_i | w_j) = \frac{c(w_j, w_i) - D}{c(w_j)} \quad \text{if } c(w_j, w_i) > c
 \]
 \[
 = P(w_i) b_{w_j} \quad \text{otherwise}
 \]
 c is the count threshold, and D is the discount. \(b_{w_j}\) is the backoff weight required for normalization

Interpolation

- **Basic idea**: Mix the probability estimates from all the estimators: estimate the trigram probability by mixing together trigram, bigram, unigram estimates
- Simple interpolation
 \[
 \hat{P}(w_n | w_{n-2}, w_{n-1}) = \lambda_3 P(w_n | w_{n-2}, w_{n-1}) + \lambda_2 P(w_n | w_{n-1}) + \lambda_1 P(w_n)
 \]
 With \(\sum_i \lambda_i = 1\)
- Interpolation with coefficients conditioned on the context
 \[
 \hat{P}(w_n | w_{n-2}, w_{n-1}) = \lambda_3 (w_{n-2}, w_{n-1}) P(w_n | w_{n-2}, w_{n-1}) + \lambda_2 (w_{n-2}, w_{n-1}) P(w_n | w_{n-1}) + \lambda_1 (w_{n-2}, w_{n-1}) P(w_n)
 \]
 - Set \(\lambda\) values to maximise the likelihood of the interpolated language model generating a *held-out* corpus (possible to use EM to do this)

Practical language modelling

- Work in log probabilities
- The ARPA language model format is commonly used to store n-gram language models (unless they are very big)
- Many toolkits: SRILM, IRSTLM, KenLM, Cambridge-CMU toolkit, ...
- Some research issues:
 - Advanced smoothing
 - Adaptation to new domains
 - Incorporating topic information
 - Long-distance dependencies
 - Distributed representations

References

- Jurafsky and Martin, chapter 4
- Hain (2002) - implicit pronunciation modelling by context-dependent acoustic models
- Gotoh and Renals (2003) - language modelling tutorial (and see refs within)
- Good coverage of n-gram models in Manning and Schütze (1999)
- Jelinek (1991) - review of early attempts to go beyond n-grams
- Chelba and Jelinek (2000) - example of a probabilistic grammar-based language model
- Goodman (2001) - state-of-the-art smoothing for n-grams