
Automatic Speech Recognition 2011-12: Lab-session sheet (5)
— Continuous speech recognition (part 3 of 3) —
Hiroshi Shimodaira (Revision : 1.1)

In this lab-session we will

• adapt speaker-independent HMMs that we have trained in the previous sessions to target speaker’s
speech using MLLR

• investigate the performance of speaker adaptation with varying the number of regression classes.

1 Updating your environment

To make your experimental environment up-to-date, re-run the initialisation command as we did last
week:

% cd WorkDir 1

% /afs/inf.ed.ac.uk/group/teaching/asr/bin/init-t3

2 MLLR speaker adaptation

In this session, we focus on adaptation of mean vectors of Gaussian components only, and we will not
consider adaptation of variance parameters. We assume supervised adaptation here, meaning that we
know the utterances (i.e. phone sequences) of adaptation data for the target speaker.

As you remember, adapting a mean vector, µ, of a Gaussian distribution linearly can be formulated
as

µ̂ = Aµ+ b = Wξ

ξ =
(
1, µT

)T
W =

(
b, A

)
where W is a transformation matrix.

In HTK, the adaptation procedure normally consists of the following steps:

Step 0 Prepare a set of speaker-independent HMMs and its “stats” file that contains state occupation
statistics.

Step 1 Generate a regression-class tree.

Step 2 Given a set of adaptation data of a target speaker, estimate speaker’s transformation matrix W
for each regression class.

Step 3 Given a set of test(evaluation) data of the target speaker, adapt the HMMs to the speaker and
carry out recognition.

Speaker adaptation experiments can be done using either monophone models (R1, R2) or tied-state
triphone models (R9).

The following sections show examples of adapting the monophone models stored in models/R2/hmm4.
Thus, you will need to modify script files according to the models you actually use. For the experiments
with tied-state triphone models, you need to use different script files from those shown below, i.e. use
the versions whose file names do not contain “ monophones”.

1/afs/inf.ed.ac.uk/group/teaching/asr/Work/YourLoginName

1



2.1 Step 0: preparation

Here, we assume that we are going to adapt models/R2/hmm4. First of all, make sure that you have those
files:

models/R2/hmm4/MODELS · · · HMM parameter file
models/R2/hmm4/stats · · · state occupation statistics file

If you do not have the “stats” file above2, run those commands to create it:

% mv models/R2/hmm4/MODELS models/R2/hmm4/MODELS.bak

% ./scripts/train_monophones_realigned_stats -R2 3

Make sure you have got the stats file now.

2.2 Step 1: generating regression class tree

Run the following command to create a script file of your own.

% cp -p scripts/mllr_mk_reg_classes_monophones scripts/my_mllr_mk_reg_classes_monophones

Edit your script, scripts/my_mllr_mk_reg_classes_monophones, so that the variables, IN HMMTYPE and
in modelnum, have the correct model type and model number for adaptation. You could also change the
value of NRegClasses to specify the number of regression classes (default is 2).

Run the script:

% ./scripts/my_mllr_mk_reg_classes_monophones

which will create the following files in models/R2/hmm4/classes.

global · · · global transform
regtree 2.tree · · · regression class tree
regtree 2.base · · · list of base classes

(The digit “2” above represents the number of regression classes.) For details, see HTKBook[Section
3.6.2, 9.1.3, 9.1.4].

2.3 Step 2: estimate transformations

Run the following command to create your own script file.

% cp -p scripts/mllr_estimate_xforms_monophones scripts/my_mllr_estimate_xforms_monophones

Edit your script, scripts/my_estimate_xforms_monophones, so that the variables IN HMMTYPE, in modelnum,
and NRegClasses are properly defined.

As you will find in the script, the script calls HERest twice to estimate transformations using adap-
tation data set, “dev-01.scp”.

Pass transformation class xform-file extension
1st-pass global class mllr1
2nd-pass regression classes mllr2

The adaptation set,“dev-01.scp”, contains the same speakers as those of the test set, “si dt5a-div3.scp”,
but utterances are mutually exclusive between the two sets.

Now, run your script:

% ./scripts/my_mllr_estimate_xforms_monophones

2You will have a stats file already for triphone models (R9), because it is needed for tree clustering. A stats file can be
created with the “-s” option for HERest.

2



which will create a directory

models/R2/hmm4/xforms 2

containing those transformation files for each speaker.

c31.mllr1, c31.mllr2,
c34.mllr1, c34.mllr2,

...
...

c49.mllr1, c49.mllr2

2.4 Step 3: adaptation and recognition

Do the following to create your own script.

% cp -p scripts/mllr_recognise_monophones scripts/my_mllr_recognise_monophones

Edit your script, scripts/my_mllr_recognise_monophones, so that the variables IN HMMTYPE, in modelnum,
and NRegClasses are properly defined.

As you will see in the script, it calls HVite, which adapts the HMMs and carries out recognition with
the adapted models. Transformation file for the speaker is automatically chosen according to the speech
file name, which contains speaker ID (this is done with the “-h” option).

HVite is called with a lot of options. Try to understand the meaning of each option with consulting
the HTKbook.

Now, run the script:

% ./scripts/my_mllr_recognise_monophones

which might take a while to finish. Make sure if the script (HVite) has not produced a warning message
of “No tokens survived”. If there was more than one such a message, you would need to change the
pruning threshold (-t) of HVite.

To get recognition accuracy, run the following script:

% ./scripts/show_results_small -R2mllr 4

3 Further study

There are a lot of issues that were not covered in the lab sessions. For example, those were missing:

• Parameterising speech data (into MFCCs)

• Creating lists of training/testing sets

• Converting phone/word labels into HTK readable form

• Creating word (pronunciation) dictionaries

• Creating language models

• Recognition with a trigram word language model

3



4 DICE computing environment

4.1 Disk quota

There is a limitation on how much amount of disk space you can use in your home directory. This is
called “disk quota”. You would reach the limit of disk quota very easily. The current status can be shown
by running the following command3

% fs listquota

(you need to run the command in a directory of the disk volume that you’d like to check)
The WorkDir provided for you in the ASR course is located in a separate disk space from your home

directory, meaning it has a different disk quota from that of your home directory.
Although there is no quota limit for each student in the work space, there is a quota limitation on

the whole area for the ASR course, which is 25GB in total. Therefore, please try to keep your disk usage
less than 1GB if possible. You can check how much disk space you are currently using by this way:

% cd WorkDir
% du -hs

4.2 AFS

Not only your home directory but also the ASR course directories are under the distributed networked
file system called AFS. The AFS is reasonably fast as long as you are in the university network, but it
can be very slow if you (i.e. your computer programs) are accessing files from another network outside
the campus network. Thus, if you want to work from home, it would be advisable that you use a secure
remote login command (i.e. ssh) to log-on a DICE machine and carry out your experiments there so that
every computation and file access are done on the machine inside the campus network. (NB: wireless
network is slow even if it is inside the campus)

If you find that your programs run much slower than usual even if you are using a DICE machine
which nobody except you is using (i.e. no other heavy process are running), please let me know with
detailed information about what you were doing on which machine so that I could ask the computer
support to look into the situation.

3This assumes you are using a AFS disk volume. For non-AFS disk volumes, you should use the “quota” command
instead.

4


