
Automatic Speech Recognition 2011-12: Lab-session sheet (4)
— Continuous speech recognition (part 2 of 3) —
Hiroshi Shimodaira (Revision : 1.3)

In this lab-session we will

• increase the number of Gaussian mixture components in the pdfs for the monophone models
• see what effects that has on accuracy
• convert monophone models into triphone (i.e. context dependent) models using a decision tree-based

clustering technique.
• convert the single Gaussian triphone HMMs into multiple mixture component triphone HMMs.
• see what effects those have on accuracy

1 Updating your environment

To make your experimental environment up-to-date, please re-run the initialisation command we used
last week:

% cd WorkDir 1

% /afs/inf.ed.ac.uk/group/teaching/asr/bin/init-t3

2 Multiple mixture component monophone models

After you have carried out the embedded training of single Gaussian monophone models several times
to get hmm9, it’s time to increase the number of mixture components of each state. This is done by
iterative “mixture splitting” with the HHEd command.

2.1 Copying source models to a new directory

At first, you need to determine the model number to increase the mixture component. If it is “models/R1/hmm9”
2, do as follows (here I assume your current directory is WorkDir):

% mkdir models/R2 · · · we are going to use a new directory, R2.
% mkdir models/R2/hmm0 · · · create a directory where source models are stored.
% cp models/R1/hmm9/MODELS models/R2/hmm0 · · · copy the monophone models.

2.2 Splitting

Run the following script, which calls HHEd, to split a single Gaussian to two components.

% ./scripts/mixup

This automatically creates a new directory, models/R2/hmm1, for new models.
You can take a look at the new models to see what changes have been made:

% less ./models/R2/hmm1/MODELS

2.3 Retraining

The new models above need retraining. Run the following command to run HERest for three times to
get models up to hmm4.

% ./scripts/train_monophones_realigned -R2 1 2 3

The option -R2 is essential, as it tells the script to use the models under R2 rather than the default
directory R1.

1/afs/inf.ed.ac.uk/group/teaching/asr/Work/YourLoginName
2Further experimental results will depend on which model you’ve chosen here. It would be interesting to see how different

performance you will get depending on the initial model number.
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2.4 Evaluation

Test the new models in models/R2/hmm4 with the following command:

% ./scripts/recognise_with_monophones_small -R2 4

which will produce recognition output:

recognised/R2/hmm4_si_dt5a-div3_output.mlf

and log files:

logs/recognise/R2/log-last · · · a whole log of the command invoked last
logs/recognise/R2/log-4-si_dt5a-div3 · · · digest of the log, which is also shown on display

Make sure that you have not got the warning message of “No token survived...” many times (a few
times should be fine).

Run the following command to get recognition accuracy.

% ./scripts/show_results_small -R2 4

Are the new models more accurate than the single-Gaussin component models from part 1? (It would be
interesting to evaluate other previous models, e.g. hmm1, hmm2, hmm3.)

It should be noted that those script files with “_small” in name indicate that the script uses a small test
set, “file_lists/si_dt5a-div3.scp” (123 utterances) rather than the subset of “file_lists/si_dt5a.scp”
(368 utterances). Using a small test-set can make the evaluation much faster, but it might loose accuracy
in estimating recognition performance. However, we need to carry out a large number of experiments in
the lab sessions, we will use this small subset for evaluation.

2.5 Increasing more number of mixture components

We can repeat the above splitting and retraining operation to get models with more number of mixture
components.

The question is how we should change the numbers of mixture components along with repetitive
training. Recall the local-optimum problem with HMM parameter estimation - it would not be a good
idea that we increase the number of mixture components very quickly, e.g. 1→ 10→ 50. The following
table shows an example of the process:

# of mix. components splitting retraining final model
(1) - - (R1/hmm9)
2 hmm0 → hmm1 hmm1, hmm2, hmm3 hmm4
3 hmm4 → hmm10 hmm11, hmm12, hmm13 hmm14
4 hmm14 → hmm20 hmm21, hmm22, hmm23 hmm24
5 hmm24 → hmm30 hmm31, hmm32, hmm33 hmm34
7 hmm34 → hmm40 hmm41, hmm42, hmm43 hmm44
10 hmm44 → hmm50 hmm51, hmm52, hmm53 hmm54
...

...
...

...

Try increasing the number of mixture components further to see how recognition accuracy/speed
changes, and draw graphs3. To that end, read the next section 2.6 at first, and copy “scripts/mixup” to
your own script4, e.g. “scripts/my-mixup”, and edit the script to change some definitions. You will also
need to copy “edfiles/mixup2.hed” to your own edit command file, e.g. “edfiles/my-mixup.hed”.

Go over your notes and make sure you understand what you just did, what mixtures of Gaussian are,
and why increasing the number of mixture components improves accuracy.

3It is a good idea that you compare the graph of likelihood on training data and the graph of recognition accuracies on
test data.

4You will find another script, scripts/mixups, which is a more sophisticated version of the script, and does not require
you to prepare the mixup.hed instruction file.

2



2.6 Details on mixup and HHEd commands

The “mixup” script calls HHEd in the following manner:

HHEd -C configs/config.basic -T 1 \

-H models/R2/hmm0/MODELS \

-M models/R2/hmm1 \

edfile/mixup2.hed \

model_lists/mono-sp.list

Here models/R2/hmm0/MODELS is used as source models, and a new model file is stored in the directory
models/R2/hmm1. Operation (edit) commands such as increasing the number of mixture components
should be given to HHEd through a file, which is specified as the 1st argument to HHEd.

As you will see, the edit command file, “edfile/mixup2.hed”, consists of only one line:

MU 2 {*.state[2-4].mix}

where “2” followed by “MU” is the number of Gaussian mixture components you want to have for each
state (i.e. 2, 3, and 4) of all the models.

3 Decision tree-based tied-state triphone models

We can improve the monophone models by making them context dependent. Among several types
of training algorithms for context-dependent models, we will employ a decision tree-based clustering
technique to have triphone models whose parameters are effectively shared, i.e. “tied”.

The procedure will look like this

Step 1a create triphone labels and triphone model list.

Step 1b create single-Gaussian cross-word triphones by cloning single-Gaussian monophone models.

Step 1c train single mixture cross-word triphones.

Step 2a carry out clustering to create single-Gaussian tied-state triphone models from the models above.

Step 2b train the tied-state triphone models.

Step 3 split Gaussian component to get multiple-mixture tied-state triphone models, and train and
evaluate the models.

3.1 Step 1: Cross-word triphone models

3.1.1 Step 1a: preparing triphone labels

Run the following script to convert phone labels into context dependent form and also create a list of
triphone models that appear in the training data.

% ./scripts/mk_xwrd_labels
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Make sure that a context dependent (triphone) label file, labels/phone/xwrd_tri.mlf has been created
from labels/phone/mono-aligned2.mlf and a list of triphone models, model_lists/xwrd_tri.list

has been created as well.

3.1.2 Step 1b: creating cross-word triphone models

Run the following script to create initial cross-word triphones by simply cloning monophone models in
models/R1/hmm9.

% ./scripts/mk_xwrd_triphones

The initial model will be stored under models/R7/hmm0.
Because the total file size of triphone models is much larger than that of monophone models, model

files hear-after will be stored in binary format rather than ascii format for efficiency, and thus you cannot
take a look at them directly.

3.1.3 Step 1c: training cross-word triphone models

Run the following command to train the triphones up to hmm2 (or further).

% ./scripts/train_xwrd_triphones 0 1 2

The cross-word triphone models created so far are only those triphones that appeared in the training
set, and thus a lot of triphones might be missing.

3.2 Step 2: Single-Gaussian tied-state triphone models

3.2.1 Step 2a: clustering HMM states

Run the following script to carry out top-down clustering of HMM states

% ./scripts/mk_tied_triphones

which will produce a long message both on display and to a file:

% less logs/train/R9/log-hhed

You will find a line like this:

TB: Stats 24->1 [4.2%] { 60309->2086 [3.5%] total }

which shows that a total of 60,309 HMM states were merged into 2,086 clustered.
The script above creates those lists:

model_lists/full_tri.list list of all possible triphone models
model_lists/trees current questions defined and trees
model_lists/treeg.list phyical models and associated logical models

See HTKBook[section 3.3.2, 10.5, and 17.8] for details, and see the script file, scripts/mk_tied_triphones
to understand how HHEd is called for clustering.

3.2.2 Step 2b: training tied-states triphone models

% ./scripts/train_tied_triphones 0 1 2 3

3.2.3 Step 2c: evaluation

Run the following scripts.

% ./scripts/recognise_with_tied_triphones_small 4

% ./scripts/show_results_small -R9 4
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3.3 Step 3: Mixup – multiple mixture triphone models

Much the same way for the monophone models,

% ./scripts/mixup_tied

which will read in models/R9/hmm4 and store the new models with two mixture components into models/R9/hmm10.

% ./scripts/train_tied_triphones 10 11 12 13

Copy mixup_tied to your own file to change the number of mixture components and model numbers,
and repeat the procedure above.

For evaluation, the same evaluation scripts shown in Step 2c can be used.

4 Implementation of decoding in HTK

ASR system uses P (X|W ) and P (W ) to find the best word sequence W .

• These estimated probabilities are different in reliability and dynamic range.
• More shorter words tend to have higher scores than those with fewer longer words in real imple-

mentation.

W ∗ = arg max
W

P (X|W )P (W )

⇒ arg max
W

P (X|W )P (W )LMSIPN(W ) · · · modified formula

= arg max
W

logP (W |X) + LMS logP (W ) + N(W ) log IP

LMS : language model weight (LM scaling factor)
IP : insertion penalty

N(W ) : number of words in W

• Interpretation of LMS
As LMS → 0, P (W )LMS → 1,
i.e. the smaller LMS becomes, the less important the LM is.

• Interpretation of IP
Assuming a uniform LM (every word has an equal occurrence probability), P (W ) for fewer longer
words (i.e. smaller N(W )) is greater than P (W ) for more shorter words (i.e. larger N(W )). IP is
used to balance this.

0 < IP ≤ 1 (i.e. log IP < 0) the smaller IP becomes, the more shorter words are penalised (i.e. fewer
longer words are preferred)

1 < IP (i.e. log IP > 0) the larger IP becomes, the more shorter words are preferred. (i.e. the more
insertion errors.)

• LMS and IP are determined heuristically (on validation data). Larger LMS usually needs larger
IP .
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