
Automatic Speech Recognition (2011-12): Lab-session sheet (2)
— Generative models and training algorithms —
Hiroshi Shimodaira (Revision : 1.1)

This lab-session is intended to learn Gaussian probability distribution function (pdf) and its mixture,
i.e. GMM (Gaussian mixture model), which is widely used for speech recognition (in HTK, of course)
and pattern recognition / machine learning.

In the session, you will

• see that GMM can be really employed to generate signals.

• investigate three types of pdfs, (i) histogram, (ii) Gaussian pdf, and (iii) GMM.

• see how model parameters are estimated iteratively by the EM algorithm.

• see the cases when the EM algorithm works and fails.

1 One-dimensional vector space

1.1 Initialisation and invoking Octave

% cd ~/asr · · · Here I’m assuming you created this directory at the last lab session.
% /afs/inf.ed.ac.uk/group/teaching/asr/bin/init-t2

% cd Octave

% octave

Once Octave is up, enter the following command to load an octave program.

octave> source("gmm-demo.m")

1.2 Experiment 1a

Here, we will see a histogram of sampled data generated from a single Gaussian distribution.

octave> xd.fname = "gmm-para-1d-1m"; · · · set parameter file name
octave> GenData · · · generate a data set
octave> PlotHistPdf · · · plot a histogram and true pdf of the data

• The function GenData() uses a GMM to randomly generate a set of samples based on the distribu-
tion specified. By default, 100 samples are generated and stored into the variable, “xn”. You can
take a look at the data by simply typing the name of the variable, i.e. “xn” at Octave prompt.

Here, the dimensionality of the data is one. The GMM parameter file “gmm-para-1d-1m” contains
parameters for the case that the number of mixtures is one, i.e. just a single Gaussian pdf.

• The histogram (blue line) shown in your window depicts a normalised histogram of the data set,
while the black line shows the true probability distribution of the GMM that generated the data
set.

• Try GenData() and PlotHistPdf() again by typing “GenData(); PlotHistPdf();”. You will see
different shapes of histogram for every trial.

• You can change the number of data to generate by giving a first argument to GenData(), i.e.
GenData(50) will produce 50 data.

• Increase the number of data to see that the histogram approximates the true pdf.

1.3 Experiment 1b

Now, let’s try GMM with two Gaussian distributions. To that end, just change the parameter file by

octave> xd.fname = "gmm-para-1d-2m";

then repeat the same with Experiment 1a.

1

1.4 Experiment 2 (training GMM)

octave> xd.fname = "gmm-para-1d-2m";

octave> GenData · · · generate a training data set of 100 samples
octave> PlotHistPdf

octave> GmmInit · · · initialise GMM parameters
octave> GmmTrain · · · Train GMM using the EM algorithm

• GmmInit() here initialises a GMM with two Gaussian pdfs.

• GmmTrain() will at first show you an initial pdfs of the GMM, and also the same histogram and
true pdf of the data as PlotHistPdf() does.

• In the octave dialogue window, you will be prompted to press Return (Enter) key to start the EM
training.

• Once the iteration of EM training starts, you will see how the pdfs of the GMM will be updated as
the iteration goes on.

• The iteration1 stops when (i) the change of the optimisation function Q has become less than a
predefined threshold, gmm.th_convergence (0.1 by default), or (ii) the iteration count has reached
a predefined number (100 by default). You can resume iteration by calling GmmTrain() again.

Try the following:

• Change the number of Gaussian pdfs to see how the estimated pdf changes. You can change the
number of Gaussian mixtures with setting the first argument GmmInit(num), e.g. GmmInit(3) will
initialise a GMM with 3 Gaussian pdfs.

• After a trial of GmmTrain(), call GmmInit() and GmmTrain() again to see how initial values of the
GMM parameters affect the performance of the EM training in terms of pdf estimation accuracy
and convergence speed.

• Try above experiments by using another training data which was generated by another GMM with
different parameters. This is done in this way:

octave> GenData(100, "gmm-para-1d-3m")

1.5 Experiments using real speech data

Instead of using the synthesised data by GMM, you can try real speech data

octave> source("lib-htk.m")

octave> ReadMFCC · · · store MFCC data to the variable ”mfcc”.
octave> xn = mfcc(:,1); · · · copy the 1st MFCC into xn.
octave> gc.plot_true_pdf = false; · · · suppress drawing true pdf.
octave> PlotHistPdf

Details for reading another MFCC data will be announced later.

1.6 Functions

There are two GMMs used in this program, one is for generating training data, and the other is for
estimating pdf. To distinguish them, “GMM(gen)” denotes the former.

GenData([n, [filename]]): Generate a data set whose size is n (100 by default). Here the dimensionality
of the data is fixed to one. Data is randomly generated using a GMM(gen) whose parameters are
read from the file filename (default: “gmm-para-1d-2m”). The data is stored in a vector variable
“xn”.

PlotHistPdf([nbins]): Plot a normalised histogram of the data, and a true pdf of data. nbins is the
number of bins of the histogram (20 by default).

1If you want to accelerate each iteration, change the value of ”gc.sleep” to zero, i.e. “gc.sleep = 0;”.

2

GmmInit([nc,[method,[means]]]) Initialises the GMM parameters. nc: the number of Gaussian pdfs,
method: type of parameter initialisation method, currently 1,2,3,4 are available. 1 is the simplest
one. means: if provided, this values are used as the mean vectors of the Gaussian pdfs. The means
should be of a column vector, ie. each element is separated with “;”.
e.g. GmmInit(2, 3, [0.5; 3.2]) will initialise a GMM with two Gaussian components, using the
method 3, setting the mean values of the two Gaussian distributions to 0.5 and 3.2, respectively.

GmmTrain([niter]) Carries out the EM training algorithm iteratively. niter: the maximum number of
iterations (100 by default). This function can be called more than once: the successive call starts
with the value obtained by the last call of the function.

GmmPdf([x]) Calculates probability density of “x” using GMM. “x” can be a one data or a sequence
of data (vector or matrix). To calculate an average likelihood for the data sequence “xn”, do as
follows

octave:> sum(GmmPdf(xn)) / length(xn)

1.7 Variables

xn : (vector) training data. xn(1)∼xn(length(xn))
xd : (structure) parameters for generating data using a GMM(gen)

xd.fname GMM parameter file name
xd.dim dimensionality of data
xd.nc the number of Gaussian components
xd.g{k}.m mean vector of k-th Gaussian component
xd.g{k}.v co-variance matrix of k-th Gaussian component
xd.w mixture weights (vector)

gmm : (structure) parameters and variables in GMM
gmm.nc number of Gaussian pdf components
gmm.dim dimensionality of vector space
gmm.init method type of methods for GMM parameter initialisation
gmm.Q the most recent Q value .
gmm.Qk Q value at the k-th iteration.
gmm.g GMM parameters
gmm.w GMM mixture weights.
gmm.th convergence EM iteration stopping threshold (0.002).

gc : (structure) parameters for control graphics
gc.plot true pdf Suppress drawing a true pdf in PlotHisPdf when it is 0
gc.hold hist axes hold axes in PlotHist when it is true.
gc.sleep sleep-time (in seconds) added at each iteration in GmmTrain() in order

to make graph updating slow. (0.5 by default)

* details should be found in “gmm-demo.m” and “gmm-em-2.m”.

2 Two-dimensional vector space

Run the following command to load an octave program for this experiment.

octave> source("gmm-demo-2d.m")

2.1 Data from a single Gaussian pdf

Try the following:

octave> xd.fname = "gmm-para-2d-1m"; · · · set parameter file name
octave> GenData · · · generate a data-set
octave> hold off; gc.plot_true_pdf = true; · · · reset plotting
octave> PlotData · · · plot the data set in 2D
octave> PlotDataPdf · · · plot the pdf that generated the data-set in 2D
octave> Plot3dDataPdf · · · plot the pdf that generated the data-set in 3D

3

octave> GRotate · · · rotate the graph
octave> view(2) · · · change the view mode to 2D

• Edit the parameter file, “gmm-para-2d-1m”, to change the parameters of Gaussian distribution, i.e.
mean vector (m) and covariance matrix2(Σ), and run the above experiment from “GenData” again.

m = (0.0, 0.0)

Σ =

(
v11 v12
v21 v22

)
=

(
2.0 0.5
0.5 1.0

)
NB: v12 = v21

• Run the following experiment of parameter estimation from the data

octave> GmmInit(1); · · · Initialise a GMM with a single Gaussian component
octave> GmmTrain; · · · Start EM training

2.2 Data from a GMM

octave> xd.fname = "gmm-para-2d-2m"; · · · set parameter file name
octave> GenData · · · generate a data-set
octave> PlotDataPdf · · · plot the pdf that generated the data-set in 2D
octave> Plot3dDataPdf · · · plot the pdf that generated the data-set in 3D

• Parameter estimation when one Gaussian component is assumed:

octave> GmmInit(1); · · · Initialise a GMM with a single Gaussian component
octave> GmmTrain; · · · Start EM training

• Parameter estimation when two Gaussian components are assumed:

octave> GmmInit(2);

octave> GmmTrain;

• Try different numbers of training data in the above parameter estimation experiments.

3 Exercises

3.1 Pdf estimation

• Investigate GMM training performance in terms of following factors:

– size of data for training
– the number of Gaussian components in GMM
– initial values of GMM in the EM algorithm (You can try three types of initialisation in Gm-

mInit())
– the number of iteration in the EM algorithm

Supplemental information

• One indicator for performance comparison would be the (log) likelihood, which can be calculated
using GmmPdf()

• You can try either of both type of data, i.e. the synthesised data by GMM using GenData() or real
speech data.

3.2 Example for the EM algorithm

Find a good example in real world, in which the EM algorithm is needed for training, and describe the
EM algorithm for the example you chose. Details of mathematical formulation are not needed, but clear
definition of an optimisation problem should be given (i.e. what variables are observable and unobservable,
what objective function is maximised with respect to which parameters?)

2A full-covariance matrix is assumed in this experiment rather than a diagonal-covariance matrix that is widely used for
ASR.

4

