Overview

Today's lecture
- Search in (large vocabulary) speech recognition
- Viterbi decoding
- Approximate search

Search and Decoding

Steve Renals

Automatic Speech Recognition — ASR Lecture 10
January - March 2012

HMM Speech Recognition

The Search Problem in ASR (1)

- Find the most probable word sequence \(\hat{W} = w_2, w_2, \ldots, w_M \)
 given the acoustic observations \(X = x_1, x_2, \ldots, x_n \):
 \[
 \hat{W} = \arg \max_W P(W|X)
 = \arg \max_W p(X | W) \frac{P(W)}{P(W)}
 \]
 - Words are composed of state sequences so we may express this criterion by summing over all state sequences \(Q = q_1, q_2, \ldots, q_n \):
 \[
 \hat{W} = \arg \max_W P(W) \sum_Q P(Q | W) P(X | Q)
 \]
The Search Problem in ASR (2)

- **Viterbi criterion**: approximate the sum over all state sequences by using the most probable state sequence:

\[\hat{W} = \arg \max_W P(W) \max_{Q \in Q_W} P(Q | W) P(X | Q) \]

- \(Q_W\) is the set of all state sequences corresponding to word sequence \(W\)

- The task of the search (or decoding) algorithm is to determine \(\hat{W}\) using the above equation given the acoustic, pronunciation and language models

- In a large vocabulary task evaluating all possible word sequences is infeasible (even using an efficient exact algorithm)
 - Reduce the size of the search space through pruning unlikely hypotheses
 - Eliminate repeated computations

Viterbi Decoding

- Naive exhaustive search: with a vocabulary size \(V\), and a sequence of \(M\) words, there are \(V^M\) different alternatives to consider!
- Viterbi decoding (forward dynamic programming) is an efficient, recursive algorithm that performs an optimal exhaustive search
- For HMM-based speech recognition, the Viterbi algorithm is used to find the most probable path through a probabilistically scored time/state lattice
- Exploits first-order Markov property—only need to keep the most probable path at each state:

\[
\begin{align*}
\max(P_{ab}, P_{bc}, P_{xy})
\end{align*}
\]

Time-state trellis

- Set up the problem as a trellis of states and times
- Use the Viterbi approximation
- At each state-time point keep the single most probable path, discard the rest
- The most probable path is the one at the end state at the final time
- Typically use log probabilities

Compiling a Recognition Network

- Build a network of HMM states from a network of phones from a network of words
Connected Word Recognition

\[P(\text{word4}) \]

\[\text{word3} \]

\[\text{word2} \]

\[\text{word1} \]

Backtrace to Obtain Word Sequence

- Backpointer array keeps track of word sequence for a path:
 \[\text{backpointer[word][wordStartFrame]} = (\text{prevWord}, \text{prevWordStartFrame}) \]
- Backtrace through backpointer array to obtain the word sequence for a path

Incorporating a bigram language model

Trigram or longer span models require a word history.
Computational Issues

- Viterbi decoding performs an exact search in an efficient manner
- Exact search is not possible for large vocabulary tasks. If the vocab size is \(V \):
 - Word boundaries are not known: \(V \) words may potentially start at each frame
 - Cross-word triphones need to be handled carefully since the acoustic score of a word-final phone depends on the initial phone of the next word
 - Long-span language models (e.g., trigrams) greatly increase the size of the search space
- Solutions:
 - Beam search (prune low probability hypotheses)
 - Dynamic search structures
 - Multipass search
 - Best-first search
 - Weighted Finite State Transducer (WFST) approaches

Sharing Computation: Prefix Pronunciation Tree

- Need to build an HMM for each word in the vocabulary
- Individual HMM for each word results in phone models duplicated in different words
- Share computation by arranging the lexicon as a tree

Beam Search

- Basic idea: Prune search paths which are unlikely to succeed
- Remove nodes in the time-state trellis whose path probability is more than a factor \(\delta \) less probable than the best path (only consider paths in the beam)
- Both language model and acoustic model can contribute to pruning
- Pronunciation tree can limit pruning since the language model probabilities are only known at word ends: each internal node can keep a list of words it contributes to
- Search errors: errors arising due to the fact that the most probable hypothesis was incorrectly pruned
- Need to balance search errors with speed

Multipass Search

- Rather than compute the single best hypothesis the decoder can output alternative hypotheses
- \(N \)-best list: list of the \(N \) most probable hypotheses
- Word Graph/Word Lattice:
 - Nodes correspond to time (frame)
 - Arrows correspond to word hypotheses (with associated acoustic and language model probabilities)
- Multipass search using progressively more detailed models
 - Eg: use bigram language model on first pass, trigram on second pass
 - Transmit information between passes as word graphs
 - Later passes rescore word graphs produced by earlier passes
Word Search Tree

- View recognition search as searching a tree
- Viterbi decoding is breadth-first search — time-synchronous
- Pruning deactivates part of the search tree
- Also possible to use best first search (stack decoding) — time asynchronous

Static and dynamic networks

- Previous approaches constructed the search space dynamically: less probable paths are not explored.
- Dynamic search is resource-efficient but results in
 - complex software
 - tight interactions between pruning algorithms and data structures
- Static networks are efficient for smaller vocabularies, but not immediately applicable to large vocabularies
- Efficient static networks would enable
 - Application of network optimization algorithms in advance
 - Decoupling of search network construction and decoding

Weighted Finite State Transducers

- Finite state automaton that transduces an input sequence to an output sequence
- States connected by transitions. Each transition has
 - input label
 - output label
 - weight

WFST Algorithms

Composition Used to combine transducers at different levels. For example if \(G \) is a finite state grammar and \(P \) is a pronunciation dictionary then \(D \) transduces a phone string to any word string, whereas \(P \circ G \) transduces a phone string to word strings allowed by the grammar

Determinisation removes non-determinancy from the network by ensuring that each state has no more than a single output transition for a given input label

Minimisation transforms a transducer to an equivalent transducer with the fewest possible states and transitions

Several libraries for WFSTs eg:
- Open FST: http://www.openfst.org/
- MIT: http://people.csail.mit.edu/ilh/fst/
- AT&T: http://www.research.att.com/~fsmtools/fsm/
WFST-based decoding

- Represent the following components as WFSTs
 - Context-dependent acoustic models (C)
 - Pronunciation dictionary (D)
 - n-gram language model (L)
- The decoding network is defined by their composition: $C \circ D \circ L$
- Successively determinize and combine the component transducers, then minimize the final network
- Problem: although the final network may be of manageable size, the construction process may be very memory intensive, particularly with 4-gram language models or vocabularies of over 50,000 words
- Used successfully in several systems

Summary

- Search in speech recognition
- Viterbi decoding
- Connected word recognition
- Incorporating the language model
- Pruning
- Prefix pronunciation trees
- Weighted finite state transducers
- Evaluation

References

- Aubert (2002) - review of decoding techniques
- Mohri et al (2002) - WFSTs applied to speech recognition