Hidden Markov Models

Steve Renals (+ Hiroshi Shimodaira)

Automatic Speech Recognition— ASR Lecture 5 January-March 2012

ASR Lecture 5

idden Markov Models

1

Variability in speech recognition

Several sources of variation

Size Number of word types in vocabulary, perplexity

Style Continuously spoken or isolated? Planned monologue

or spontaneous conversation?

Speaker Tuned for a particular speaker, or

speaker-independent? Adaptation to speaker

characteristics and accent

Acoustic environment Noise, competing speakers, channel

conditions (microphone, phone line, room acoustics)

Overview

Fundamentals of HMMs

Today

- Statistical Speech Recognition
- HMM Acoustic Models
- Forward algorithm

Next lecture

- Viterbi algorithm
- Forward-backward training
- Extension to mixture models

ASR Lecture 5

len Markov Models

2

Linguistic Knowledge or Machine Learning?

- Intense effort needed to derive and encode linguistic rules that cover all the language
- Very difficult to take account of the variability of spoken language with such approaches
- Data-driven machine learning: Construct simple models of speech which can be learned from large amounts of data (thousands of hours of speech recordings)

ASR Lecture 5

2

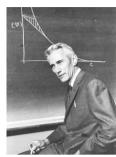
ASR Lecture

- 4

Statistical Speech Recognition

A. A. Mapson (1886).

Andrey Markov (1856-1922)



Claude Shannon (1916-2001)

ASR Lecture 5

dden Markov Models

5

Statistical speech recognition

Statistical models offer a statistical "guarantee" — see the licence conditions of the best known automatic dictation system, for example:

Licensee understands that speech recognition is a statistical process and that recognition errors are inherent in the process. Licensee acknowledges that it is licensee's responsibility to correct recognition errors before using the results of the recognition.

Fundamental Equation of Statistical Speech Recognition

If \mathbf{X} is the sequence of acoustic feature vectors (observations) and \mathbf{W} denotes a word sequence, the most likely word sequence \mathbf{W}^* is given by

$$\mathbf{W}^* = \arg \max_{\mathbf{W}} P(\mathbf{W} \mid \mathbf{X})$$

Applying Bayes' Theorem:

$$P(\mathbf{W} \mid \mathbf{X}) = \frac{p(\mathbf{X} \mid \mathbf{W})P(\mathbf{W})}{p(\mathbf{X})}$$

$$\propto p(\mathbf{X} \mid \mathbf{W})P(\mathbf{W})$$

$$\mathbf{W}^* = \arg \max_{\mathbf{W}} \underbrace{p(\mathbf{X} \mid \mathbf{W})}_{\mathbf{Acoustic}} \underbrace{P(\mathbf{W})}_{\mathbf{Languag}}$$

$$\mod e$$

ASR Lecture 5

Markov Models

_

Data

- The statistical framework is based on learning from data
- Standard corpora with agreed evaluation protocols very important for the development of the ASR field
- TIMIT corpus (1986)—first widely used corpus, still in use
 - Utterances from 630 North American speakers
 - Phonetically transcribed, time-aligned
 - Standard training and test sets, agreed evaluation metric (phone error rate)
- Many standard corpora released since TIMIT: DARPA
 Resource Management, read newspaper text (eg Wall St
 Journal), human-computer dialogues (eg ATIS), broadcast
 news (eg Hub4), conversational telephone speech (eg
 Switchboard), multiparty meetings (eg AMI)
- Corpora have real value when closely linked to evaluation benchmark tests (with new test data from the same domain)

ASR Lecture 5 Hidden Markov Models

cture 5 Hidden Markov Models

Evaluation

- How accurate is a speech recognizer?
- Use dynamic programming to align the ASR output with a reference transcription
- Three type of error: insertion, deletion, substitution
- Word error rate (WER) sums the three types of error. If there are *N* words in the reference transcript, and the ASR output has *S* substitutions, *D* deletions and *I* insertions, then:

$$WER = 100 \cdot \frac{S + D + I}{N} \% \qquad Accuracy = 100 - WER\%$$

- Speech recognition evaluations: common training and development data, release of new test sets on which different systems may be evaluated using word error rate
 - NIST evaluations enabled an objective assessment of ASR research, leading to consistent improvements in accuracy
 - May have encouraged incremental approaches at the cost of subduing innovation ("Towards increasing speech recognition error rates")

ASR Lecture 5

Hidden Markov Models

a

Hidden Markov Models

Lloyd R. Welch

James K. Baker

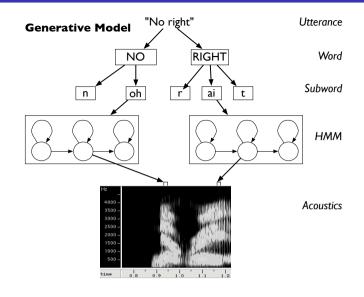
Steve J. Young

Kai-Fu Lee

Frederick Jelinek

R Lecture 5 Hidden Markov Models

Hierarchical modelling of speech

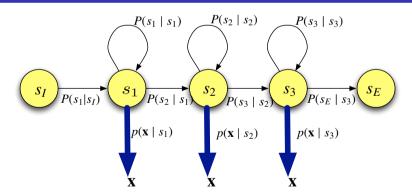


ASR Lecture 5

dden Markov Models

10

Continuous Density HMM

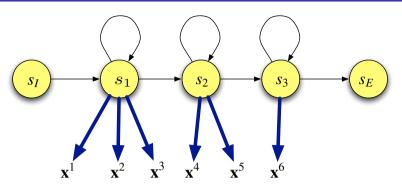


Probabilistic finite state automaton

Paramaters λ :

- Transition probabilities: $a_{kj} = P(s_j \mid s_k)$
- Output probability density function: $b_i(\mathbf{x}) = p(\mathbf{x} \mid s_i)$

Continuous Density HMM



Probabilistic finite state automaton

Paramaters λ :

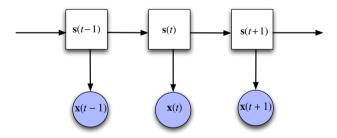
- Transition probabilities: $a_{kj} = P(s_j \mid s_k)$
- Output probability density function: $b_i(\mathbf{x}) = p(\mathbf{x} \mid s_i)$

ASR Lecture 5

idden Markov Models

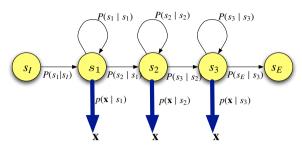
12

HMM Assumptions



- Observation independence An acoustic observation x is conditionally independent of all other observations given the state that generated it
- Markov process A state is conditionally independent of all other states given the previous state

HMM Assumptions



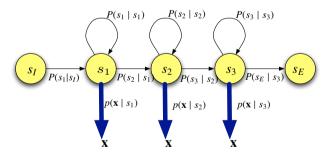
- Observation independence An acoustic observation x is conditionally independent of all other observations given the state that generated it
- Markov process A state is conditionally independent of all other states given the previous state

ASR Lecture 5

en Markov Models

1

Output distribution



Single multivariate Gaussian with mean μ^j , covariance matrix Σ^j :

$$b_i(\mathbf{x}) = p(\mathbf{x} \mid s_i) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}^j, \boldsymbol{\Sigma}^j)$$

M-component Gaussian mixture model:

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid s_j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}^{jm}, \boldsymbol{\Sigma}^{jm})$$

The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **Quantity** Likelihood Determine the overall likelihood of an observation sequence $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T)$ being generated by an HMM
- Oecoding Given an observation sequence and an HMM, determine the most probable hidden state sequence
- **Training** Given an observation sequence and an HMM, learn the best HMM parameters $\lambda = \{\{a_{jk}\}, \{b_j()\}\}$

ASR Lecture 5

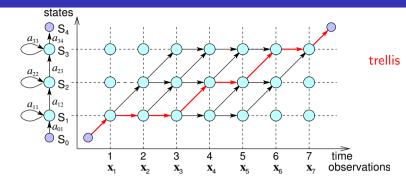
Hidden Markov Models

16

1. Likelihood: The Forward algorithm

- Goal: determine $p(X \mid \lambda)$
- Sum over all possible state sequences $s_1s_2\dots s_T$ that could result in the observation sequence ${\bf X}$
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)

1. Likelihood: how to calculate?



$$P(X, \operatorname{path}_{j}|\Lambda) = P(X|\operatorname{path}_{j}, \Lambda)P(\operatorname{path}_{j}|\Lambda)$$

$$= P(X|s_0s_1s_1s_1s_2s_2s_3s_3s_4, \Lambda)P(s_0s_1s_1s_1s_2s_2s_3s_3s_4|\Lambda)$$

$$=b_1(\mathbf{x}_1)b_1(\mathbf{x}_2)b_1(\mathbf{x}_3)b_2(\mathbf{x}_4)b_2(\mathbf{x}_5)b_3(\mathbf{x}_6)b_3(\mathbf{x}_7)a_{01}a_{11}a_{11}a_{12}a_{22}a_{23}a_{33}a_{34}$$

$$P(X|\Lambda) = \sum_{\{\text{path}_i\}} P(X, \text{path}_j|\Lambda) \simeq \max_{\text{path}_j} P(X, \text{path}_j|\Lambda)$$

forward(backward) algorithm

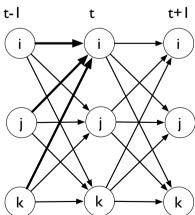
Viterbi algorithm

ASR Lecture 5

1

Recursive algorithms on HMMs

Visualize the problem as a $\it state-time\ trellis$



1. Likelihood: The Forward algorithm

- Goal: determine $p(X \mid \lambda)$
- Sum over all possible state sequences $s_1 s_2 \dots s_T$ that could result in the observation sequence **X**
- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Forward probability, $\alpha_t(s_j)$: the probability of observing the observation sequence $\mathbf{x}_1 \dots \mathbf{x}_t$ and being in state s_i at time t:

$$\alpha_t(s_j) = \rho(\mathbf{x}_1, \dots, \mathbf{x}_t, S(t) = s_j \mid \lambda)$$

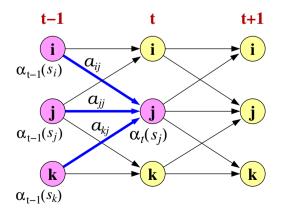
ASR Lecture 5

Hidden Markov Models

20

1. Likelihood: Forward Recursion

$$\alpha_t(s_j) = p(\mathbf{x}_1, \dots, \mathbf{x}_t, S(t) = s_j \mid \lambda) = \sum_{i=1}^N \alpha_{t-1}(s_i) a_{ij} b_j(\mathbf{x}_t)$$



1. Likelihood: The Forward recursion

Initialization

$$lpha_0(s_I) = 1$$
 $lpha_0(s_i) = 0$ if $s_i \neq s_I$

Recursion

$$\alpha_t(s_j) = \sum_{i=1}^N \alpha_{t-1}(s_i) a_{ij} b_j(\mathbf{x}_t)$$
 for $t = 1, \dots, T$

Termination

$$p(\mathbf{X} \mid \lambda) = \alpha_T(s_E) = \sum_{i=1}^{N} \alpha_T(s_i) a_{iE}$$

ASR Lecture 5

len Markov Models

2

Interim Summary

- Framework for statistical speech recognition
- HMM acoustic models
- HMM likelihood computation: the Forward algorithm
- Reading
 - Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195–304: section 2.2.
 - Jurafsky and Martin (2008). *Speech and Language Processing* (2nd ed.): sections 6.1–6.5; 9.2; 9.4.
 - Rabiner and Juang (1989). "An introduction to hidden Markov models", *IEEE ASSP Magazine*, **3** (1), 4–16.
 - Renals and Hain (2010). "Speech Recognition",
 Computational Linguistics and Natural Language Processing Handbook, Clark, Fox and Lappin (eds.), Blackwells.

ASR Lecture 5 Hidden Markov Models 22

ASR Lecture 5

23

Hidden Markov Models (part 2)

Steve Renals (+ Hiroshi Shimodaira)

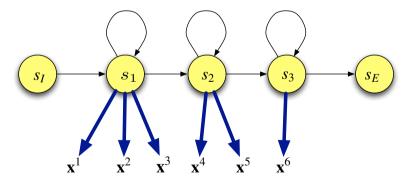
Automatic Speech Recognition— ASR Lecture 6 January-March 2012

ASR Lecture 6

en Markov Models (part 2)

24

Continuous Density HMM



Probabilistic finite state automaton

Paramaters λ :

- Transition probabilities: $a_{kj} = P(s_i \mid s_k)$
- ullet Output probability density function: $b_j(\mathbf{x}) = p(\mathbf{x} \mid s_j)$

Overview

Fundamentals of HMMs

Previously

- Statistical Speech Recognition
- HMM Acoustic Models
- Forward algorithm

Today

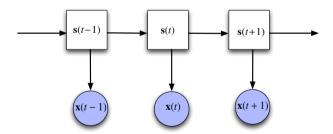
- Viterbi algorithm
- Forward-backward training
- Extension to mixture models

ASR Lecture 6

Markov Models (part 2)

2

HMM Acoustic Model

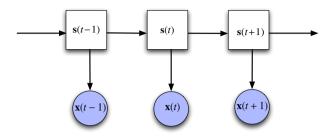


Hidden state \mathbf{s} and observed acoustic features \mathbf{x}

$$p(\mathbf{X} \mid \mathbf{W}) = \sum_{\mathbf{Q}} p(\mathbf{X} \mid \mathbf{Q}) P(\mathbf{Q} \mid \mathbf{W})$$

Q is a sequence of pronunciations

HMM Acoustic Model



Hidden state \mathbf{s} and observed acoustic features \mathbf{x}

$$p(\mathbf{X}\mid\mathbf{W}) = \max_{\mathbf{Q}} p(\mathbf{X}\mid\mathbf{Q})P(\mathbf{Q}\mid\mathbf{W})$$

Q is a sequence of pronunciations

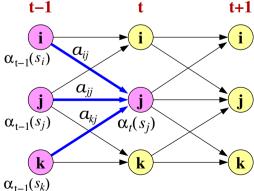
ASR Lecture 6

den Markov Models (part 2)

27

1. Likelihood: Forward Recursion

$$\alpha_t(s_j) = p(\mathbf{x}_1, \dots, \mathbf{x}_t, S(t) = s_j \mid \lambda)$$
t-1 t



The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **1.1 Likelihood** Determine the overall likelihood of an observation sequence $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T)$ being generated by an HMM
- ② Decoding Given an observation sequence and an HMM, determine the most probable hidden state sequence
- **Training** Given an observation sequence and an HMM, learn the best HMM parameters $\lambda = \{\{a_{ik}\}, \{b_i()\}\}$

ASR Lecture 6

en Markov Models (part 2)

2

Viterbi approximation

- Instead of summing over all possible state sequences, just consider the most likely
- Achieve this by changing the summation to a maximisation in the recursion:

$$V_t(s_j) = \max_i V_{t-1}(s_i) a_{ij} b_j(\mathbf{x}_t)$$

- Changing the recursion in this way gives the likelihood of the most probable path
- We need to keep track of the states that make up this path by keeping a sequence of backpointers to enable a Viterbi backtrace: the backpointer for each state at each time indicates the previous state on the most probable path

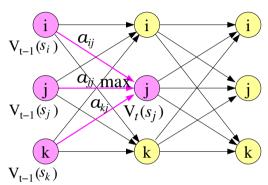
Viterbi Recursion

$$V_t(s_j) = \max_i V_{t-1}(s_i) a_{ij} b_j(\mathbf{x}_t)$$

Likelihood of the most probable path

t-1

t+1



ASR Lecture 6

31

2. Decoding: The Viterbi algorithm

Initialization

$$V_0(s_I) = 1$$

 $V_0(s_j) = 0$ if $s_j \neq s_I$
 $bt_0(s_i) = 0$

Recursion

$$V_t(s_j) = \max_{i=1}^N V_{t-1}(s_i)a_{ij}b_j(\mathbf{x}_t)$$

$$bt_t(s_j) = \arg\max_{i=1}^N V_{t-1}(s_i)a_{ij}b_j(\mathbf{x}_t)$$

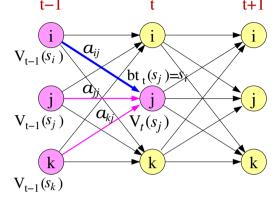
Termination

$$P^* = V_T(s_E) = \max_{i=1}^N V_T(s_i) a_{iE}$$

$$s_T^* = bt_T(q_E) = \arg \max_{i=1}^N V_T(s_i) a_{iE}$$

Viterbi Recursion

Backpointers to the previous state on the most probable path

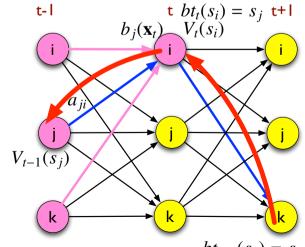


ASR Lecture 6

3

Viterbi Backtrace

Backtrace to find the state sequence of the most probable path



$$bt_{t+1}(s_k) = s_i$$

3. Training: Forward-Backward algorithm

- ullet Goal: Efficiently estimate the parameters of an HMM λ from an observation sequence
- Assume single Gaussian output probability distribution

$$b_i(\mathbf{x}) = p(\mathbf{x} \mid s_i) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}^j, \boldsymbol{\Sigma}^j)$$

- Parameters λ :
 - Transition probabilities aii:

$$\sum_{j} a_{ij} = 1$$

• Gaussian parameters for state s_j : mean vector $\mu^{\mathbf{j}}$; covariance matrix $\Sigma^{\mathbf{j}}$

ASR Lecture 6

len Markov Models (part 2)

- -

EM Algorithm

- Viterbi training is an approximation—we would like to consider *all* possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_t(s_j)$ of occupying state s_i at time t given the sequence of observations
- We can use this for an iterative algorithm for HMM training: the EM algorithm
- Each iteration has two steps:

E-step estimate the state occupation probabilities (Expectation)

M-step re-estimate the HMM parameters based on the estimated state occupation probabilities (Maximisation)

Viterbi Training

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding
- Maximum likelihood estimate of a_{ij} , if $C(s_i \rightarrow s_j)$ is the count of transitions from s_i to s_i

$$\hat{a}_{ij} = rac{\mathcal{C}(s_i
ightarrow s_j)}{\sum_k \mathcal{C}(s_i
ightarrow s_k)}$$

• Likewise if Z_j is the set of observed acoustic feature vectors assigned to state j, we can use the standard maximum likelihood estimates for the mean and the covariance:

$$\hat{oldsymbol{\mu}}^j = rac{\sum_{\mathbf{x} \in Z_j} \mathbf{x}}{|Z_j|} \ \hat{oldsymbol{\Sigma}}^j = rac{\sum_{\mathbf{x} \in Z_j} (\mathbf{x} - \hat{oldsymbol{\mu}}^j) (\mathbf{x} - \hat{oldsymbol{\mu}}^j)^T}{|Z_i|}$$

ASR Lecture 6

36

Backward probabilities

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the *Backward* probabilities

$$\beta_t(s_j) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T \mid S(t) = s_j, \lambda)$$

The probability of future observations given a the HMM is in state s_i at time t

- These can be recursively computed (going backwards in time)
 - Initialisation

$$\beta_T(s_i) = a_{iE}$$

Recursion

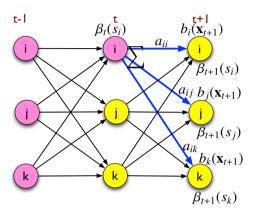
$$eta_t(s_i) = \sum_{j=1}^N a_{ij} b_j(\mathbf{x}_{t+1}) eta_{t+1}(s_j) \quad ext{for } t = T-1, \dots, 1$$

Termination

$$p(\mathbf{X} \mid \boldsymbol{\lambda}) = \beta_0(s_I) = \sum_{j=1}^N a_{Ij} b_j(\mathbf{x}_1) \beta_1(s_j) = \alpha_T(s_E)$$

Backward Recursion

$$\beta_t(s_i) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T \mid S(t) = s_i, \lambda)$$



ASR Lecture 6

39

Re-estimation of Gaussian parameters

- The sum of state occupation probabilities through time for a state, may be regarded as a "soft" count
- We can use this "soft" alignment to re-estimate the HMM parameters:

$$\hat{\boldsymbol{\mu}}^{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(s_{j}) \mathbf{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(s_{j})}$$

$$\hat{\boldsymbol{\Sigma}}^{j} = \frac{\sum_{t=1}^{T} \gamma_{t}(s_{j}) (\mathbf{x}_{t} - \hat{\boldsymbol{\mu}}^{j}) (\mathbf{x} - \hat{\boldsymbol{\mu}}^{j})^{T}}{\sum_{t=1}^{T} \gamma_{t}(s_{j})}$$

State Occupation Probability

- The state occupation probability $\gamma_t(s_j)$ is the probability of occupying state s_i at time t given the sequence of observations
- Express in terms of the forward and backward probabilities:

$$\gamma_t(s_j) = P(S(t) = s_j \mid \mathbf{X}, \lambda) = \frac{1}{\alpha_T(s_E)} \alpha_t(j) \beta_t(j)$$

recalling that $p(\mathbf{X}|\lambda) = \alpha_T(s_E)$

Since

$$\alpha_{t}(s_{j})\beta_{t}(s_{j}) = p(\mathbf{x}_{1}, \dots, \mathbf{x}_{t}, S(t) = s_{j} \mid \lambda)$$

$$p(\mathbf{x}_{t+1}, \mathbf{x}_{t+2}, \mathbf{x}_{T} \mid S(t) = s_{j}, \lambda)$$

$$= p(\mathbf{x}_{1}, \dots, \mathbf{x}_{t}, \mathbf{x}_{t+1}, \mathbf{x}_{t+2}, \dots, \mathbf{x}_{T}, S(t) = s_{j} \mid \lambda)$$

$$= p(\mathbf{X}, S(t) = s_{j} \mid \lambda)$$

$$P(S(t) = s_j \mid \mathbf{X}, \lambda) = \frac{p(\mathbf{X}, S(t) = s_j \mid \lambda)}{p(\mathbf{X} \mid \lambda)}$$

ASR Lecture 6

40

Re-estimation of transition probabilities

• Similarly to the state occupation probability, we can estimate $\xi_t(s_i, s_j)$, the probability of being in s_i at time t and s_j at t+1, given the observations:

$$\xi_{t}(s_{i}, s_{j}) = P(S(t) = s_{i}, S(t+1) = s_{j} \mid \mathbf{X}, \boldsymbol{\lambda})$$

$$= \frac{P(S(t) = s_{i}, S(t+1) = s_{j}, \mathbf{X} \mid \boldsymbol{\lambda})}{p(\mathbf{X}|\boldsymbol{\lambda})}$$

$$= \frac{\alpha_{t}(s_{i})a_{ij}b_{j}(\mathbf{x}_{t+1})\beta_{t+1}(s_{j})}{\alpha_{T}(s_{E})}$$

• We can use this to re-estimate the transition probabilities

$$\hat{a}_{ij} = rac{\sum_{t=1}^{T} \xi_t(s_i, s_j)}{\sum_{k=1}^{N} \sum_{t=1}^{T} \xi_t(s_i, s_k)}$$

Pulling it all together

• Iterative estimation of HMM parameters using the EM algorithm. At each iteration

E step For all time-state pairs

- **①** Recursively compute the forward probabilities $\alpha_t(s_i)$ and backward probabilities $\beta_t(j)$
- ② Compute the state occupation probabilities $\gamma_t(s_j)$ and $\xi_t(s_i, s_j)$
- M step Based on the estimated state occupation probabilities re-estimate the HMM parameters: mean vectors $\boldsymbol{\mu}^{j}$, covariance matrices $\boldsymbol{\Sigma}^{j}$ and transition probabilities a_{ij}
- The application of the EM algorithm to HMM training is sometimes called the Forward-Backward algorithm

ASR Lecture 6

l de la companya de

Extension to Gaussian mixture model (GMM)

- The assumption of a Gaussian distribution at each state is very strong; in practice the acoustic feature vectors associated with a state may be strongly non-Gaussian
- In this case an *M*-component Gaussian mixture model is an appropriate density function:

$$b_j(\mathbf{x}) = p(\mathbf{x} \mid s_j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}^{jm}, \boldsymbol{\Sigma}^{jm})$$

Given enough components, this family of functions can model any distribution.

• Train using the EM algorithm, in which the component estimation probabilities are estimated in the E-step

Extension to a corpus of utterances

- We usually train from a large corpus of R utterances
- If \mathbf{x}_t^r is the tth frame of the rth utterance \mathbf{X}^r then we can compute the probabilities $\alpha_t^r(j)$, $\beta_t^r(j)$, $\gamma_t^r(s_j)$ and $\xi_t^r(s_i, s_j)$ as before
- The re-estimates are as before, except we must sum over the *R* utterances, eg:

$$\hat{\mu}^j = \frac{\sum_{r=1}^R \sum_{t=1}^T \gamma_t^r(s_j) \mathbf{x}_t^r}{\sum_{r=1}^R \sum_{t=1}^T \gamma_t^r(s_j)}$$

ASR Lecture 6

4

EM training of HMM/GMM

- Rather than estimating the state-time alignment, we estimate the component/state-time alignment, and component-state occupation probabilities $\gamma_t(s_j, m)$: the probability of occupying mixture component m of state s_i at time t
- We can thus re-estimate the mean of mixture component m of state s_i as follows

$$\hat{\mu}^{jm} = \frac{\sum_{t=1}^{T} \gamma_t(s_j, m) \mathbf{x}_t}{\sum_{t=1}^{T} \gamma_t(s_j, m)}$$

And likewise for the covariance matrices (mixture models often use diagonal covariance matrices)

• The mixture coefficients are re-estimated in a similar way to transition probabilities:

$$\hat{c}_{jm} = \frac{\sum_{t=1}^{T} \gamma_t(s_j, m)}{\sum_{\ell=1}^{M} \sum_{t=1}^{T} \gamma_t(s_j, \ell)}$$

Doing the computation

- The forward, backward and Viterbi recursions result in a long sequence of probabilities being multiplied
- This can cause floating point underflow problems
- In practice computations are performed in the log domain (in which multiplies become adds)
- Working in the log domain also avoids needing to perform the exponentiation when computing Gaussians

ASR Lecture 6

lden Markov Models (part 2)

47

References: HMMs

- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195–304: section 2.2.
- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): sections 6.1–6.5; 9.2; 9.4. (Errata at http://www.cs.colorado.edu/~martin/SLP/Errata/SLP2-PIEV-Errata.html)
- Rabiner and Juang (1989). "An introduction to hidden Markov models", *IEEE ASSP Magazine*, **3** (1), 4–16.
- Renals and Hain (2010). "Speech Recognition", Computational Linguistics and Natural Language Processing Handbook, Clark, Fox and Lappin (eds.), Blackwells.

ASR Lecture 6 Hidden Markov Models (part 2)

Summary: HMMs

- HMMs provide a generative model for statistical speech recognition
- Three key problems
 - ① Computing the overall likelihood: the Forward algorithm
 - 2 Decoding the most likely state sequence: the Viterbi algorithm
 - Sestimating the most likely parameters: the EM (Forward-Backward) algorithm
- Solutions to these problems are tractable due to the two key HMM assumptions
 - Conditional independence of observations given the current state
 - Markov assumption on the states

ASR Lecture 6

ov Models (part 2)

4