Case study: ASR of multiparty conversations

Steve Renals

Automatic Speech Recognition— ASR Lecture 14
19 March 2009
Overview

Transcription of speech in meetings

- Large vocabulary continuous speech recognition
- Speaker independent, conversational style, environment with reverberation, multiple acoustic sources: An “ASR complete” problem
- Applications: transcription, summarization, translation, ... of meetings, lectures, seminars, ...
- Development of a system
 - language resources
 - baseline system
 - acoustic models
 - language models and vocabulary
Right I didn’t mean to imply that
Yeah
that we - that we shouldn’t discuss this now, but I’m - I’m just saying that
Oh not right now, but I mean in the future. So at this meeting with Liz
Right
I - you know - I mean
Right
I - I do - I’d like to - I like that stuff
Sure sure
So when is she showing up?
Well, I mean, they’re coming in April
April. OK
Right. But, um
Spontaneous conversational speech

Substantial segmental and suprasegmental variations not found in read speech:

- Variations in intonation (F0) and timing (segment durations)
- Hesitations
- False starts
- Ungrammatical constructs
- Increased expression (e.g., laughter)
Instrumented meeting rooms

- Capture all aspects of a “communication scene”
- Four a four-person meeting instrument a room with:
 - 6 cameras (4 close-up, 2 room view)
 - headset microphones
 - microphone array (distant microphones)
 - capture of data projector, whiteboard, handwriting (digital pens)
Baseline system: conversational telephone speech (CTS)

- General strategy: build a baseline system using CTS data, than adapt to meetings data
- GMM/HMM system: cross-word, state-clustered triphone models (7000 states, 16 Gaussians/state)
- PLP front end: MF-PLPs + zeroth cepstral coefficient + first derivatives + second derivatives
- Cepstral mean and variance normalization:
 - over a complete recording normalize the cepstral coefficients by subtracting the mean vectors and dividing by the variance
 - reduces distortion by removing channel effects (spectral characteristics of microphone)
 - channel effects are multiplicative in spectral domain, additive in cepstral domain
- VTLN
- Constrained MLLR speaker adaptive training
CTS: Pronunciation dictionary

- Pronunciation dictionary based on UNISYN (115,000 words)
- Added a further 11,500 domain specific pronunciations
- Automatic pronunciation generation (using Festival), then hand corrected
- Accuracy of automatically generated pronunciations
 - In vocabulary: 98% phone accuracy, 89% word accuracy
 - New words: 89% phone accuracy, 51% word accuracy
- Final vocabulary of 50,000 words derived from training data and language model sources
- Language models constructed from about 1.2 billion words: transcripts, web-retrieved texts based on in-domain n-grams, broadcast news transcripts, newswire
CTS: Accuracy

- Using the the NIST 2001 evaluation data
- Pass 1 (no VTLN, no MLLR): 37.2% WER
- Pass 2 (VTLN, no MLLR): 33.8% WER
- Pass 3 (VTLN, MLLR): 32.1% WER
Meeting corpora

- Existing, well-studied speech corpora: conversational telephone speech (CTS), broadcast news (BN) — hundreds/thousands hours of transcribed speech data
- Transcribed meeting collections
 - ICSI meeting corpus (70 hours): 3–12 person meetings, audio only
 - AMI meeting corpus (100 hours): mainly 4 person meetings, multimodal
 - Some other smaller corpora
- Meeting transcription tasks
 - Conference room or lecture
 - Headset microphones or microphone array
Statistics of meeting corpora

<table>
<thead>
<tr>
<th>Meeting resource</th>
<th>Avg Dur (sec)</th>
<th>Avg. Words/Seg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICSI</td>
<td>2.11</td>
<td>7.30</td>
</tr>
<tr>
<td>NIST</td>
<td>2.26</td>
<td>7.17</td>
</tr>
<tr>
<td>ISL</td>
<td>2.36</td>
<td>8.77</td>
</tr>
<tr>
<td>AMI</td>
<td>3.29</td>
<td>10.09</td>
</tr>
<tr>
<td>VT</td>
<td>2.49</td>
<td>8.27</td>
</tr>
<tr>
<td>CHIL</td>
<td>1.80</td>
<td>5.63</td>
</tr>
</tbody>
</table>

- Segment is speech with no silence of more than 100ms
- Average utterance durations greater than CTS, more variation in duration
Meeting corpus OOV rates (%)

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Vocabulary Source</th>
<th>“Padded”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICSI</td>
<td>NIST</td>
</tr>
<tr>
<td>ICSI</td>
<td>0.00</td>
<td>4.95</td>
</tr>
<tr>
<td>NIST</td>
<td>4.50</td>
<td>0.00</td>
</tr>
<tr>
<td>ISL</td>
<td>5.12</td>
<td>5.92</td>
</tr>
<tr>
<td>AMI</td>
<td>4.47</td>
<td>4.39</td>
</tr>
<tr>
<td>ALL</td>
<td>1.60</td>
<td>4.35</td>
</tr>
</tbody>
</table>

- Meeting resource specific: vocabularies derived from training data
- Padded: vocabularies extended to 50,000 words using most frequent additional words from broadcast news
Audio preprocessing

- Segment audio, discarding silence and noise
- Label speakers for adaptation
- Normalize input channels
- Suppress noise and cross-talk
- For headset microphones main problem is the elimination of cross-talk:
 - use specific features for cross-talk suppression: cross-correlation, cross-channel energy, signal kurtosis
 - train a classifier to detect speaker activity: MLP with 101 frames (1s) of input context
Language models

- n-gram language models (4-grams)
- Small amount of in-domain text data
- Augment this with:
 - other conversational speech transcripts
 - broadcast news
 - data retrieved from the web using n-grams from meeting data as queries
- Perplexities on meeting data
 - Trigram: 84
 - 4-gram: 81
Language model data sources

<table>
<thead>
<tr>
<th>LM component</th>
<th>size</th>
<th>weights (trigram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI data (prelim.)</td>
<td>206K</td>
<td>0.038</td>
</tr>
<tr>
<td>Fisher</td>
<td>21M</td>
<td>0.237</td>
</tr>
<tr>
<td>Hub4 LM96</td>
<td>151M</td>
<td>0.044</td>
</tr>
<tr>
<td>ICSI meeting corpus</td>
<td>0.9M</td>
<td>0.080</td>
</tr>
<tr>
<td>ISL meeting corpus</td>
<td>119K</td>
<td>0.091</td>
</tr>
<tr>
<td>NIST meeting corpus</td>
<td>157K</td>
<td>0.065</td>
</tr>
<tr>
<td>Switchboard/Callhome</td>
<td>3.4M</td>
<td>0.070</td>
</tr>
<tr>
<td>webdata (meetings)</td>
<td>128M</td>
<td>0.163</td>
</tr>
<tr>
<td>webdata (fisher)</td>
<td>128M</td>
<td>0.103</td>
</tr>
<tr>
<td>webdata (AMI)</td>
<td>138M</td>
<td>0.108</td>
</tr>
</tbody>
</table>
Adaptation from CTS to ICSI Meetings

- Testing on development test data from ICSI corpus...
- CTS system (255 hours training data): 33% WER
- Trained on 70 hours ICSI data (in domain): 25.3% WER
- MAP adapted CTS models: 24.6% WER
- Technical issue: CTS is narrowband data, meetings are wideband. One iteration of MLLR transforms were used to estimated the narrowband/wideband transform (using ICSI data)
right yeah race i didn’t mean imply that we’d did that we
should that that’s just now but i’m i’m saying that
oh not right now i mean in the future
right
so at this meeting with with you know i mean
right
i i do i’d like to i’d like to stop
sure sure
when she showing
well i mean theyre coming in april
april but in right
right but

>
Putting the pieces together to build a large vocabulary system for conversational speech
Adapting to a new (but related) domain
Accuracies on test data
Next lecture: robust speech recognition
References: Renals, Hain and Bourlard (2007); Hain et al (2005)