Automated Reasoning: Solutions to Tutorial Exercise 1

Exercise 1

1. Cats chase mice or birds, but not at the same time. This can be represented as: $(M \lor B) \land \neg(M \land B)$

where M: Cats chase mice B: Cats chase birds

M	B	$M \lor B$	$\neg(M \land B)$	$(M \lor B) \land \neg (M \land B)$
t	t	t	f	f
t	f	t	t	t
$\int f$	t	t	t	t
f	f	f	t	f

2. If it rains the beach will be empty.

This can be represented as:	$R \longrightarrow$	E
-----------------------------	---------------------	---

where R: It rains E: Beach is empty

R	E	$R \longrightarrow E$
t	t	t
t	f	f
f	t	t
f	f	t

- 3. If Jane bought a piano today, she either sold her old one or took out a bank loan. This can be represented as: $P \longrightarrow S \lor B$
 - where P: Jane bought a piano today S: Jane sold her old piano B: Jane took out a bank loan

P	S	L	$P \longrightarrow S \lor B$
t	t	t	t
t	t	f	t
t	$\int f$	t	t
t	$\int f$	f	f
$\int f$	t	t	t
f	t	f	t
f	f	t	t
$\int f$	$\int f$	f	t

Exercise 2

The proposition $P \land (P \longrightarrow Q)$ is satisfiable if there is some interpretation which evaluates to *true*. It is valid if all interpretations evaluate to *true*.

 $P \land (P \longrightarrow Q)$ is satisfiable since it evaluates to true when P is true and Q is true.

 $P\,\wedge\,(P\,\longrightarrow\,Q)$ is not valid since it evaluates to false when P is $\mathit{false}.$

Exercise 3

Connective	Expression using
–	$p \mid p$
\wedge	$\left \begin{array}{c c} (p \mid q \end{array} \right) \left \begin{array}{c c} (p \mid q) \end{array} \right $
\vee	$\left \begin{array}{c} (p \mid p \) \mid (\begin{array}{c} q \mid q \) \end{array} \right $
\longrightarrow	$p \mid (q \mid q)$

Some notes:

- $p \land q$ is the same as $\neg (p \mid q)$
- $p \lor q$ is the same as $\neg(\neg p \land \neg q)$
- $p \longrightarrow q$ is the same as $\neg p \lor q$

Exercise 4

One possible ND proof:

Alternatively, since the above proof does an application of impI that can be omitted to give a more succinct derivation:

$$\frac{\frac{[R]_3 \quad [R \to P]_1}{P} \ mp}{\frac{P}{\neg R \lor P} \ disjI2} \ \frac{[\neg R]_3}{\neg R \lor P} \ disjI1}{((\neg R \lor P) \to (Q \to S))_2} \ mp \\ \frac{\frac{\neg R \lor P}{((\neg R \lor P) \to (Q \to S)) \to (Q \to S))_2}}{((\neg R \lor P) \to (((\neg R \lor P) \to (Q \to S)) \to (Q \to S)))} \ mpI_1$$

Note: The Isabelle theory file associated with this tutorial gives yet another proof that does not use the excluded middle axiom and Cut rule. It uses Isabelle's **ccontr** rule, which (as indicated in the lectures) is an alternative to excluded middle when it comes to making the logic classical.