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Coursework overview

e Part 1: Propositional and first-order proofs [40%)|

e Part 2: Geometry with order and signed areas [60%)]
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Part 1: Propositional and first-order proofs

e Procedural proofs (sequence of rule applications).
e You are given a list of rules you may use.

e View them using thm rule.
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e You meet two inhabitants: Sue and Zippy. Sue says that
Zippy is a knave. Zippy says, ‘I and Sue are knights.’

e Can you determine who is a knight and who is a knave?

e The most natural way to solve this problem is to reason by

cases.

e In Isabelle we can use case_tac. E.g. (case_tac "V x").
We then have two subgoals: V. x = goal and -V x =
goal.
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Knights and Knaves problems

o We formalise ‘a is a knave’ as V a and ‘a is a knight’ as
G a.

e ‘Person a says statement P’ is formalised as S n a = P,
where n is some natural number.

e We index the statement by n because one person may make
more than one statement.

e We are also assuming that the domain of the quantifiers is
all the inhabitants of the island (so you, as a visitor to the
island, are not included).



Knights and Knaves problems

e We can formalise the previous problem:
eS1s=VzandS1z=Ks AKz



Knights and Knaves problems

e We can formalise the previous problem:

eS1s=VzandS1z=Ks AKz

e Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not

a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.



Knights and Knaves problems

We can formalise the previous problem:
S1s=VzandS1z=Ks A K z
Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not

a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.

e Suppose we get the formalisation wrong:
S1s=VzandS1z=KsandS 2 z =K z.



Knights and Knaves problems

e We can formalise the previous problem:
eS1s=VzandS1z=Ks AKz

e Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not
a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.

e Suppose we get the formalisation wrong:
eS1s=VzandS1z=KsandS 2 z =K z

e The previous analysis holds, thus Zippy is a knave, yet he
makes a true statement (that Sue is a knight), so Zippy is a
knight. Hence the problem is unsolvable.
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Part 2: Structured proofs & powerful reasoning tools

o Isabelle has a lot of machinery built in for presentation,
interaction and automation.

e Structured proofs (also called declarative);
the name of the language is Isar.

e Powerful automatic tools: simp, auto, safe, blast, fast,
force, fastforce, linarith, arith, presburger, algebra,
meson, metis.

e A link to external provers: sledgehammer.
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Reasoning with equality (=)

Rules:
t=s S s=1t S
Pi subst i ssubst
refl s=1 gym r=s 5=
t=t r—— pr— trans
Ve. fe=gx
—F———¢€xt
f=yg

Are all of these rules necessary, or can some of them be derived
from the others?
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mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
1. Ne.O+c=c
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Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
No subgoals!

lemma “Ve :: int. Jab.a +3xb=¢"

apply (rule alll)

apply (rule tac x = ¢ in exI)
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mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
No subgoals!

lemma “Ve :: int. Jab.a +3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule_tac x = 0 in exI)
apply (rule tacs = 0 and t = “3 % 0” in ssubst)
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apply (rule tacs = “0+ ¢’ and t = “c+ 0” in ssubst)
apply (rule add.commute)
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Reasoning with equality (=)

mult zero right: a*0
Output: -0
No subgoals! add 0: 0+a=a

add.commute: a + b=Db + a

lemma “Ve :: int. Jab.a+3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule_tac x = 0 in exI)
apply (subst mult zero right)
apply (subst add.commute)
apply (rule add_0)
done

We can save all that variable instantiation using subst:
rewriting.
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But we will be using Isar:

Without subst:

lemma “Vc :: int. Jab. a +3*xb=c"
proof
fix ¢ :: int
have “c+3%x0=c+0"
by (rule_tac s = 0 and
t = “3%0” in ssubst,
rule mult _zero right, rule refl)

also have “... =0+ ¢’
by (rule add.commute)
also have “... = ¢” by (rule add_0)

finally have “c+3 %0 =¢"
by (rule trans, rule tac refl)
then have “3b. c+3xb=¢"
by (rule exI)
then show “Jab.a +3*b=¢"
by (rule exI)
qed

With subst:

lemma “Ve :: int. dJab. a +3x b ="
proof
fix ¢ :: int
have “c+3%x0=c+0"
by (subst mult zero right,

rule refl)
also have “... =0+ ¢’
by (rule add.commute)
also have “... = ¢’ by (rule add_0)

finally have “c+3 %0 = ¢’
by (rule trans, rule tac refl)
then have “3b. c+ 3% b=¢"
by (rule exI)
then show “Jab.a+3+xb=7c"
by (rule exI)
ged
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Useful attributes to use with subst

symmetric: This swaps the left and right hand sides of the
equality in theorem.

Usage: subst theorem [symmetric]

asm: This allows substitution into the assumption rather
than the conclusion.

Usage: subst(asm) theorem

n, where n is a natural number: This allows
substitution with the n*® occurrence in the goal of an
expression that can be unified with the left-hand side of
theorem.

Usage: subst(n) theorem



Reasoning with equality (=)

mult zero right: a*o0
Output: =0
No subgoals! add O: 0+a=a

add.commute: a +b=Db+a

lemma “Ve :: int. dab.a+3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule tac x = 0 in exI)
apply (simp only: mult zero right add.commute add 0)
done

Method simp does substitution automatically (given the right
rules!).
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Reasoning with equality (=)

mult zero right: a*o0
Output: =0
No subgoals! add 0: 0+a=a

add.commute: a + b =b + a

lemma “Ve ::int. Jab.a+3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in ex])
apply (rule tac x = 0 in exI)
apply simp
done

Method simp does substitution automatically (given the right
rules!).
...and the right rules are already in the Main library.
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Isabelle’s powerful tools

e simp:
Uses:

e auto:

Uses:

rewriting using equations.

apply simp

apply (simp add: eq; ... eqy)
apply (simp only: eq; ... eQn)
apply (simp del: eq; ... eqy)

rewriting -+ proof search (using classical logic).
apply auto

apply (auto simp add: eq; ... eqy)
apply (auto simp only: eq; ... eqp)
apply (auto simp del: eq; ... eqp)

e Others: blast, fast, force, fastforce, safe, algebra, linarith,

arith,

presburger, meson, metis.
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Isabelle’s powerful tools

Sledgehammer

Tool for invoking external provers.

Isabelle should not just trust external provers.

Sledgehammer tries to reconstruct proof inside Isabelle.

Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj _on f A=
9. ' f'ACAN(Vae A g(fa)=a) N (Wb e A flg(fb)) = [b)
by (metis order refl the inv_into f fthe inv_into onto)
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Isabelle’s powerful tools

Useful commands:

e try0: tries a bunch of internal provers (auto, simp, ...).
e try: try0 + sledgehammer -+ counterexample checkers!

e Use them just like sledgehammer.
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Part 2: Geometry with order and signed areas [60%)]

e Getting familiar with axiomatic systems.

e In particular, Isabelle’s locales.

e We will define familiar geometric objects in terms of new
concepts (order, signed area).

o It will help if we relate the formal statements to our
geometric intuition.
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Signed area

e You will be given a locale defining a function A.

e We can interpret Az y z as the signed area of a triangle
defined by the three arguments, x, y and z, of A.

e The signed area of a triangle is just the area of that
triangle, multiplied by —1 if the points of that triangle are
traversed clockwise, and by 1 otherwise.

A A
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e Take as an example Axiom 2 from the locale:
"x #y =3Jz. (R::real)= Ax y z".

e Geometrically it says given two distinct points we can
construct a triangle with any area (even negative)
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Hints for proving together with Isabelle

e Always solve the problems in your head (or on paper),
before applying rules!

e If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

e This gives the provers a hint.

e Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”| Q
sledgehammer.

e When in doubt add brackets.

e When in doubt add type constraints.

e During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

e Counterexample checkers (Quickcheck, Nitpick) can help
you realise you made a wrong turn. Either call them
directly (typing quickcheck or nitpick), or simply type
try. (Especially important for knights and knaves).
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More hints

e Start early.
e Go to the lab sessions.

e Contact me by email: I.I.Morris@sms.ed.ac.uk.



