Automated Reasoning

Coursework lecture:
Proving and Reasoning in Isabelle/HOL

Imogen I. Morris

20/10/2017



Coursework overview

e Part 1: Propositional and first-order proofs [40%)|

e Part 2: Geometry with order and signed areas [60%)]



Part 1: Propositional and first-order proofs

e Procedural proofs (sequence of rule applications).



Part 1: Propositional and first-order proofs

e Procedural proofs (sequence of rule applications).

e You are given a list of rules you may use.



Part 1: Propositional and first-order proofs

e Procedural proofs (sequence of rule applications).
e You are given a list of rules you may use.

e View them using thm rule.



Knights and Knaves problems

e You meet two inhabitants: Sue and Zippy. Sue says that
Zippy is a knave. Zippy says, ‘I and Sue are knights.’

e Can you determine who is a knight and who is a knave?



Knights and Knaves problems

e You meet two inhabitants: Sue and Zippy. Sue says that
Zippy is a knave. Zippy says, ‘I and Sue are knights.’

e Can you determine who is a knight and who is a knave?

e The most natural way to solve this problem is to reason by
cases.



Knights and Knaves problems

e You meet two inhabitants: Sue and Zippy. Sue says that
Zippy is a knave. Zippy says, ‘I and Sue are knights.’

e Can you determine who is a knight and who is a knave?

e The most natural way to solve this problem is to reason by

cases.

e In Isabelle we can use case_tac. E.g. (case_tac "V x").
We then have two subgoals: V. x = goal and -V x =
goal.



Knights and Knaves problems

o We formalise ‘a is a knave’ as V a and ‘a is a knight’ as
G a.



Knights and Knaves problems

o We formalise ‘a is a knave’ as V a and ‘a is a knight’ as

G a.

e ‘Person a says statement P’ is formalised as S n a = P,
where n is some natural number.



Knights and Knaves problems

o We formalise ‘a is a knave’ as V a and ‘a is a knight’ as
G a.

e ‘Person a says statement P’ is formalised as S n a = P,
where n is some natural number.

e We index the statement by n because one person may make
more than one statement.



Knights and Knaves problems

o We formalise ‘a is a knave’ as V a and ‘a is a knight’ as
G a.

e ‘Person a says statement P’ is formalised as S n a = P,
where n is some natural number.

e We index the statement by n because one person may make
more than one statement.

e We are also assuming that the domain of the quantifiers is
all the inhabitants of the island (so you, as a visitor to the
island, are not included).



Knights and Knaves problems

e We can formalise the previous problem:
eS1s=VzandS1z=Ks AKz



Knights and Knaves problems

e We can formalise the previous problem:

eS1s=VzandS1z=Ks AKz

e Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not

a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.



Knights and Knaves problems

We can formalise the previous problem:
S1s=VzandS1z=Ks A K z
Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not

a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.

e Suppose we get the formalisation wrong:
S1s=VzandS1z=KsandS 2 z =K z.



Knights and Knaves problems

e We can formalise the previous problem:
eS1s=VzandS1z=Ks AKz

e Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not
a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.

e Suppose we get the formalisation wrong:
eS1s=VzandS1z=KsandS 2 z =K z

e The previous analysis holds, thus Zippy is a knave, yet he
makes a true statement (that Sue is a knight), so Zippy is a
knight. Hence the problem is unsolvable.



Part 2: Structured proofs & powerful reasoning tools

o Isabelle has a lot of machinery built in for presentation,
interaction and automation.



Part 2: Structured proofs & powerful reasoning tools

o Isabelle has a lot of machinery built in for presentation,
interaction and automation.

e Structured proofs (also called declarative);
the name of the language is Isar.



Part 2: Structured proofs & powerful reasoning tools

o Isabelle has a lot of machinery built in for presentation,
interaction and automation.

e Structured proofs (also called declarative);
the name of the language is Isar.

e Powerful automatic tools: simp, auto, safe, blast, fast,
force, fastforce, linarith, arith, presburger, algebra,
meson, metis.



Part 2: Structured proofs & powerful reasoning tools

o Isabelle has a lot of machinery built in for presentation,
interaction and automation.

e Structured proofs (also called declarative);
the name of the language is Isar.

e Powerful automatic tools: simp, auto, safe, blast, fast,
force, fastforce, linarith, arith, presburger, algebra,
meson, metis.

e A link to external provers: sledgehammer.



Reasoning with equality (=)

Rules:
t:SPt 5 subst
refl s=1 gym
t=1t S-Sy
Ve. fe=gx




Reasoning with equality (=)

Rules:
t=s S s=1t S
Pi subst i ssubst
refl s=1 gym r=s 5=
t=t r—— pr— trans
Ve. fe=gx
—F———¢€xt
f=yg

Are all of these rules necessary, or can some of them be derived
from the others?



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
1. Ve. Jdab.a+3xb=c

lemma “Ve:: int. dab.a+3xb=¢"



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
1. Ae.Jab.a+3*xb=c

lemma “Ve :: int. Jab.a +3xb=¢"
apply (rule alll)



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
1. Ne.Fb.c+3xb=c

lemma “Ve :: int. Jab.a +3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
1. Ne.c+3x0=c

lemma “Ve :: int. Jab.a +3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule_tac x = 0 in exI)



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
1. Ae.3%x0=0
2. Ne.c+0=c

lemma “Ve :: int. Jab.a +3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule_tac x = 0 in exI)
apply (rule tacs = 0 and t = “3 % 0” in ssubst)



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
1. Ne.c+0=c

lemma “Ve :: int. Jab.a +3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule_tac x = 0 in exI)
apply (rule tacs = 0 and t = “3 % 0” in ssubst)
apply (rule mult _zero right)



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
I. Nec.c+0=0+c¢
2. Ne.0+c=c

lemma “Ve :: int. Jab.a +3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule_tac x = 0 in exI)
apply (rule tacs = 0 and t = “3 % 0” in ssubst)
apply (rule mult _zero right)
apply (rule tacs = “0+ ¢’ and t = “c+ 0” in ssubst)



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
1. Ne.O+c=c

lemma “Ve :: int. Jab.a +3xb=¢"

apply (rule alll)

apply (rule tac x = ¢ in exI)

apply (rule_tac x = 0 in exI)

apply (rule tacs = 0 and t = “3 % 0” in ssubst)
(
(
(

apply (rule mult _zero right)
apply (rule tacs = “0+ ¢’ and t = “c+ 0” in ssubst)
apply (rule add.commute)



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
No subgoals!

lemma “Ve :: int. Jab.a +3xb=¢"

apply (rule alll)

apply (rule tac x = ¢ in exI)

apply (rule_tac x = 0 in exI)
apply (rule tacs = 0 and t = “3 % 0” in ssubst)
apply (rule mult _zero right)
apply (rule tacs = “0+ ¢’ and t = “c+ 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)



Reasoning with equality (=)

mult zero right: a*0-=0
add 0: 0O+a=a
add.commute: a + b=Db + a

Output:
No subgoals!

lemma “Ve :: int. Jab.a +3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule_tac x = 0 in exI)
apply (rule tacs = 0 and t = “3 % 0” in ssubst)
apply (rule mult _zero right)
apply (rule tacs = “0+ ¢’ and t = “c+ 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)
done



Reasoning with equality (=)

mult zero right: a*0
Output: -0
No subgoals! add 0: 0+a=a

add.commute: a + b=Db + a

lemma “Ve :: int. Jab.a+3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule_tac x = 0 in exI)
apply (subst mult zero right)
apply (subst add.commute)
apply (rule add_0)
done

We can save all that variable instantiation using subst:
rewriting.

u]
8]
I
i
it




But we will be using Isar:

Without subst:

lemma “Vc :: int. Jab. a +3*xb=c"
proof
fix ¢ :: int
have “c+3%x0=c+0"
by (rule_tac s = 0 and
t = “3%0” in ssubst,
rule mult _zero right, rule refl)

also have “... =0+ ¢’
by (rule add.commute)
also have “... = ¢” by (rule add_0)

finally have “c+3 %0 =¢"
by (rule trans, rule tac refl)
then have “3b. c+3xb=¢"
by (rule exI)
then show “Jab.a +3*b=¢"
by (rule exI)
qed

With subst:

lemma “Ve :: int. dJab. a +3x b ="
proof
fix ¢ :: int
have “c+3%x0=c+0"
by (subst mult zero right,

rule refl)
also have “... =0+ ¢’
by (rule add.commute)
also have “... = ¢’ by (rule add_0)

finally have “c+3 %0 = ¢’
by (rule trans, rule tac refl)
then have “3b. c+ 3% b=¢"
by (rule exI)
then show “Jab.a+3+xb=7c"
by (rule exI)
ged

u]
8]
I
i
it




Useful attributes to use with subst

symmetric: This swaps the left and right hand sides of the
equality in theorem.

Usage: subst theorem [symmetric]

asm: This allows substitution into the assumption rather
than the conclusion.

Usage: subst(asm) theorem

n, where n is a natural number: This allows
substitution with the n*® occurrence in the goal of an
expression that can be unified with the left-hand side of
theorem.

Usage: subst(n) theorem



Reasoning with equality (=)

mult zero right: a*o0
Output: =0
No subgoals! add O: 0+a=a

add.commute: a +b=Db+a

lemma “Ve :: int. dab.a+3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in exI)
apply (rule tac x = 0 in exI)
apply (simp only: mult zero right add.commute add 0)
done

Method simp does substitution automatically (given the right
rules!).

u]
8]
I
i
it




Reasoning with equality (=)

mult zero right: a*o0
Output: =0
No subgoals! add 0: 0+a=a

add.commute: a + b =b + a

lemma “Ve ::int. Jab.a+3xb=¢"
apply (rule alll)
apply (rule tac x = ¢ in ex])
apply (rule tac x = 0 in exI)
apply simp
done

Method simp does substitution automatically (given the right
rules!).
...and the right rules are already in the Main library.

u]
8]
I
i
it




Isabelle’s powerful tools

e simp: rewriting using equations.
Uses: apply simp
apply (simp add: eq; ... eqy)
apply (simp only: eq; ... eQn)
apply (simp del: eq; ... eqy)



Isabelle’s powerful tools

e simp:
Uses:

e auto:
Uses:

rewriting using equations.

apply simp

apply (simp add: eq; ... eqy)
apply (simp only: eq; ... eQn)
apply (simp del: eq; ... eqy)

rewriting -+ proof search (using classical logic).
apply auto

apply (auto simp add: eq; ... eqy)
apply (auto simp only: eq; ... eqp)
apply (auto simp del: eq; ... eqp)



Isabelle’s powerful tools

e simp:
Uses:

e auto:

Uses:

rewriting using equations.

apply simp

apply (simp add: eq; ... eqy)
apply (simp only: eq; ... eQn)
apply (simp del: eq; ... eqy)

rewriting -+ proof search (using classical logic).
apply auto

apply (auto simp add: eq; ... eqy)
apply (auto simp only: eq; ... eqp)
apply (auto simp del: eq; ... eqp)

e Others: blast, fast, force, fastforce, safe, algebra, linarith,

arith,

presburger, meson, metis.



Isabelle’s powerful tools

Sledgehammer



Isabelle’s powerful tools

Sledgehammer

e Tool for invoking external provers.



Isabelle’s powerful tools

Sledgehammer

e Tool for invoking external provers.

e Isabelle should not just trust external provers.



Isabelle’s powerful tools

Sledgehammer

e Tool for invoking external provers.
e Isabelle should not just trust external provers.

o Sledgehammer tries to reconstruct proof inside Isabelle.



Isabelle’s powerful tools

Sledgehammer

Tool for invoking external provers.

Isabelle should not just trust external provers.

Sledgehammer tries to reconstruct proof inside Isabelle.

Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.



Isabelle’s powerful tools

Sledgehammer

Tool for invoking external provers.

Isabelle should not just trust external provers.

Sledgehammer tries to reconstruct proof inside Isabelle.

Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj _on f A=
dg. ¢ fACANNa€e A . g(fa)=a)\(Vbe A. f(¢g(fb)) = fb)’

sledgehammer



Isabelle’s powerful tools

Sledgehammer

Tool for invoking external provers.

Isabelle should not just trust external provers.

Sledgehammer tries to reconstruct proof inside Isabelle.

Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj _on f A=
9. ' f'ACAN(Vae A g(fa)=a) N (Wb e A flg(fb)) = [b)
by (metis order refl the inv_into f fthe inv_into onto)



Isabelle’s powerful tools

Useful commands:



Isabelle’s powerful tools

Useful commands:

e try0: tries a bunch of internal provers (auto, simp, ...).



Isabelle’s powerful tools

Useful commands:

e try0: tries a bunch of internal provers (auto, simp, ...).

e try: try0 + sledgehammer -+ counterexample checkers!



Isabelle’s powerful tools

Useful commands:

e try0: tries a bunch of internal provers (auto, simp, ...).
e try: try0 + sledgehammer -+ counterexample checkers!

e Use them just like sledgehammer.



Part 2: Geometry with order and signed areas [60%)]



Part 2: Geometry with order and signed areas [60%)]

e Getting familiar with axiomatic systems.



Part 2: Geometry with order and signed areas [60%)]

e Getting familiar with axiomatic systems.

e In particular, Isabelle’s locales.



Part 2: Geometry with order and signed areas [60%)]

e Getting familiar with axiomatic systems.
e In particular, Isabelle’s locales.

e We will define familiar geometric objects in terms of new
concepts (order, signed area).



Part 2: Geometry with order and signed areas [60%)]

e Getting familiar with axiomatic systems.

e In particular, Isabelle’s locales.

e We will define familiar geometric objects in terms of new
concepts (order, signed area).

o It will help if we relate the formal statements to our
geometric intuition.



Signed area

e You will be given a locale defining a function A.



Signed area

e You will be given a locale defining a function A.

e We can interpret Az y z as the signed area of a triangle
defined by the three arguments, x, y and z, of A.



Signed area

e You will be given a locale defining a function A.

e We can interpret Az y z as the signed area of a triangle
defined by the three arguments, x, y and z, of A.

e The signed area of a triangle is just the area of that
triangle, multiplied by —1 if the points of that triangle are
traversed clockwise, and by 1 otherwise.

A A




Relating the formal statement to geometry

e Take as an example Axiom 2 from the locale:
"x #y =3Jz. (R::real)= Ax y z".



Relating the formal statement to geometry

e Take as an example Axiom 2 from the locale:
"x #y =3Jz. (R::real)= Ax y z".

e Geometrically it says given two distinct points we can
construct a triangle with any area (even negative)



Relating the formal statement to geometry

e Take as an example Axiom 2 from the locale:
"x #y =3Jz. (R::real)= Ax y z".

e Geometrically it says given two distinct points we can
construct a triangle with any area (even negative)

2



Hints for proving together with Isabelle

e Always solve the problems in your head (or on paper),
before applying rules!



Hints for proving together with Isabelle

e Always solve the problems in your head (or on paper),
before applying rules!

e If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

e This gives the provers a hint.



Hints for proving together with Isabelle

e Always solve the problems in your head (or on paper),
before applying rules!

e If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

e This gives the provers a hint.

e Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”| Q
sledgehammer.



Hints for proving together with Isabelle

e Always solve the problems in your head (or on paper),
before applying rules!

e If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

e This gives the provers a hint.

e Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”| Q
sledgehammer.

e When in doubt add brackets.



Hints for proving together with Isabelle

e Always solve the problems in your head (or on paper),
before applying rules!

e If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

e This gives the provers a hint.

e Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”| Q
sledgehammer.

e When in doubt add brackets.

e When in doubt add type constraints.



Hints for proving together with Isabelle

e Always solve the problems in your head (or on paper),
before applying rules!

e If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

e This gives the provers a hint.

e Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”| Q
sledgehammer.

e When in doubt add brackets.

e When in doubt add type constraints.

e During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!



Hints for proving together with Isabelle

e Always solve the problems in your head (or on paper),
before applying rules!

e If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

e This gives the provers a hint.

e Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”| Q
sledgehammer.

e When in doubt add brackets.

e When in doubt add type constraints.

e During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

e Counterexample checkers (Quickcheck, Nitpick) can help
you realise you made a wrong turn. Either call them
directly (typing quickcheck or nitpick), or simply type
try. (Especially important for knights and knaves).



More hints



More hints

e Start early.



More hints

e Start early.

e Go to the lab sessions.



More hints

e Start early.
e Go to the lab sessions.

e Contact me by email: I.I.Morris@sms.ed.ac.uk.



