
Automated Reasoning

Coursework lecture:
Proving and Reasoning in Isabelle/HOL

Imogen I. Morris

20/10/2017



Coursework overview

• Part 1: Propositional and first-order proofs [40%]

• Part 2: Geometry with order and signed areas [60%]



Part 1: Propositional and first-order proofs

• Procedural proofs (sequence of rule applications).

• You are given a list of rules you may use.

• View them using thm rule.



Part 1: Propositional and first-order proofs

• Procedural proofs (sequence of rule applications).

• You are given a list of rules you may use.

• View them using thm rule.



Part 1: Propositional and first-order proofs

• Procedural proofs (sequence of rule applications).

• You are given a list of rules you may use.

• View them using thm rule.



Knights and Knaves problems

• You meet two inhabitants: Sue and Zippy. Sue says that
Zippy is a knave. Zippy says, ‘I and Sue are knights.’

• Can you determine who is a knight and who is a knave?

• The most natural way to solve this problem is to reason by
cases.

• In Isabelle we can use case_tac. E.g. (case_tac "V x").
We then have two subgoals: V x =⇒ goal and ¬ V x =⇒
goal.



Knights and Knaves problems

• You meet two inhabitants: Sue and Zippy. Sue says that
Zippy is a knave. Zippy says, ‘I and Sue are knights.’

• Can you determine who is a knight and who is a knave?
• The most natural way to solve this problem is to reason by
cases.

• In Isabelle we can use case_tac. E.g. (case_tac "V x").
We then have two subgoals: V x =⇒ goal and ¬ V x =⇒
goal.



Knights and Knaves problems

• You meet two inhabitants: Sue and Zippy. Sue says that
Zippy is a knave. Zippy says, ‘I and Sue are knights.’

• Can you determine who is a knight and who is a knave?
• The most natural way to solve this problem is to reason by
cases.

• In Isabelle we can use case_tac. E.g. (case_tac "V x").
We then have two subgoals: V x =⇒ goal and ¬ V x =⇒
goal.



Knights and Knaves problems

• We formalise ‘a is a knave’ as V a and ‘a is a knight’ as
G a.

• ‘Person a says statement P ’ is formalised as S n a = P ,
where n is some natural number.

• We index the statement by n because one person may make
more than one statement.

• We are also assuming that the domain of the quantifiers is
all the inhabitants of the island (so you, as a visitor to the
island, are not included).



Knights and Knaves problems

• We formalise ‘a is a knave’ as V a and ‘a is a knight’ as
G a.

• ‘Person a says statement P ’ is formalised as S n a = P ,
where n is some natural number.

• We index the statement by n because one person may make
more than one statement.

• We are also assuming that the domain of the quantifiers is
all the inhabitants of the island (so you, as a visitor to the
island, are not included).



Knights and Knaves problems

• We formalise ‘a is a knave’ as V a and ‘a is a knight’ as
G a.

• ‘Person a says statement P ’ is formalised as S n a = P ,
where n is some natural number.

• We index the statement by n because one person may make
more than one statement.

• We are also assuming that the domain of the quantifiers is
all the inhabitants of the island (so you, as a visitor to the
island, are not included).



Knights and Knaves problems

• We formalise ‘a is a knave’ as V a and ‘a is a knight’ as
G a.

• ‘Person a says statement P ’ is formalised as S n a = P ,
where n is some natural number.

• We index the statement by n because one person may make
more than one statement.

• We are also assuming that the domain of the quantifiers is
all the inhabitants of the island (so you, as a visitor to the
island, are not included).



Knights and Knaves problems

• We can formalise the previous problem:
• S 1 s = V z and S 1 z = K s ∧ K z.

• Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not
a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.

• Suppose we get the formalisation wrong:
• S 1 s = V z and S 1 z = K s and S 2 z = K z.
• The previous analysis holds, thus Zippy is a knave, yet he
makes a true statement (that Sue is a knight), so Zippy is a
knight. Hence the problem is unsolvable.



Knights and Knaves problems

• We can formalise the previous problem:
• S 1 s = V z and S 1 z = K s ∧ K z.
• Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not
a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.

• Suppose we get the formalisation wrong:
• S 1 s = V z and S 1 z = K s and S 2 z = K z.
• The previous analysis holds, thus Zippy is a knave, yet he
makes a true statement (that Sue is a knight), so Zippy is a
knight. Hence the problem is unsolvable.



Knights and Knaves problems

• We can formalise the previous problem:
• S 1 s = V z and S 1 z = K s ∧ K z.
• Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not
a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.

• Suppose we get the formalisation wrong:
• S 1 s = V z and S 1 z = K s and S 2 z = K z.

• The previous analysis holds, thus Zippy is a knave, yet he
makes a true statement (that Sue is a knight), so Zippy is a
knight. Hence the problem is unsolvable.



Knights and Knaves problems

• We can formalise the previous problem:
• S 1 s = V z and S 1 z = K s ∧ K z.
• Solution: Zippy cannot be a knight, because if what he said
was true, then Sue would be telling a lie and then she is not
a knight - contradiction. Hence Zippy is a knave, and as
Sue is telling the truth, she is a knight.

• Suppose we get the formalisation wrong:
• S 1 s = V z and S 1 z = K s and S 2 z = K z.
• The previous analysis holds, thus Zippy is a knave, yet he
makes a true statement (that Sue is a knight), so Zippy is a
knight. Hence the problem is unsolvable.



Part 2: Structured proofs & powerful reasoning tools

• Isabelle has a lot of machinery built in for presentation,
interaction and automation.

• Structured proofs (also called declarative);
the name of the language is Isar.

• Powerful automatic tools: simp, auto, safe, blast, fast,
force, fastforce, linarith, arith, presburger, algebra,
meson, metis.

• A link to external provers: sledgehammer.



Part 2: Structured proofs & powerful reasoning tools

• Isabelle has a lot of machinery built in for presentation,
interaction and automation.

• Structured proofs (also called declarative);
the name of the language is Isar.

• Powerful automatic tools: simp, auto, safe, blast, fast,
force, fastforce, linarith, arith, presburger, algebra,
meson, metis.

• A link to external provers: sledgehammer.



Part 2: Structured proofs & powerful reasoning tools

• Isabelle has a lot of machinery built in for presentation,
interaction and automation.

• Structured proofs (also called declarative);
the name of the language is Isar.

• Powerful automatic tools: simp, auto, safe, blast, fast,
force, fastforce, linarith, arith, presburger, algebra,
meson, metis.

• A link to external provers: sledgehammer.



Part 2: Structured proofs & powerful reasoning tools

• Isabelle has a lot of machinery built in for presentation,
interaction and automation.

• Structured proofs (also called declarative);
the name of the language is Isar.

• Powerful automatic tools: simp, auto, safe, blast, fast,
force, fastforce, linarith, arith, presburger, algebra,
meson, metis.

• A link to external provers: sledgehammer.



Reasoning with equality (=)

Rules:

t = s P s subst
P t

s = t P s ssubst
P t

reflt = t
s = t sym
t = s

r = s s = t trans
r = t

∀x. f x = g x
ext

f = g

Are all of these rules necessary, or can some of them be derived
from the others?



Reasoning with equality (=)

Rules:

t = s P s subst
P t

s = t P s ssubst
P t

reflt = t
s = t sym
t = s

r = s s = t trans
r = t

∀x. f x = g x
ext

f = g

Are all of these rules necessary, or can some of them be derived
from the others?



Reasoning with equality (=)

Output:
1. ∀c. ∃ a b. a + 3 ∗ b = c

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”

apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult_zero_right)
apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)
done



Reasoning with equality (=)

Output:
1.

∧
c. ∃ a b. a + 3 ∗ b = c

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)

apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult_zero_right)
apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)
done



Reasoning with equality (=)

Output:
1.

∧
c. ∃b. c + 3 ∗ b = c

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)

apply (rule_tac x = 0 in exI)
apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult_zero_right)
apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)
done



Reasoning with equality (=)

Output:
1.

∧
c. c + 3 ∗ 0 = c

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)

apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult_zero_right)
apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)
done



Reasoning with equality (=)

Output:
1.

∧
c. 3 ∗ 0 = 0

2.
∧
c. c + 0 = c

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)

apply (rule mult_zero_right)
apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)
done



Reasoning with equality (=)

Output:
1.

∧
c. c + 0 = c

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult_zero_right)

apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)
done



Reasoning with equality (=)

Output:
1.

∧
c. c + 0 = 0 + c

2.
∧
c. 0 + c = c

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult_zero_right)
apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)

apply (rule add.commute)
apply (rule add_0)
done



Reasoning with equality (=)

Output:
1.

∧
c. 0 + c = c

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult_zero_right)
apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)

apply (rule add_0)
done



Reasoning with equality (=)

Output:
No subgoals!

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult_zero_right)
apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)

done



Reasoning with equality (=)

Output:
No subgoals!

mult_zero_right: a * 0 = 0
add_0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (rule_tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult_zero_right)
apply (rule_tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)
apply (rule add_0)
done



Reasoning with equality (=)

Output:
No subgoals!

mult_zero_right: a * 0
= 0

add_0: 0 + a = a
add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (subst mult_zero_right)
apply (subst add.commute)
apply (rule add_0)
done

We can save all that variable instantiation using subst:
rewriting.



But we will be using Isar:

Without subst:

lemma “∀c :: int. ∃a b. a+ 3 ∗ b = c"
proof

fix c :: int
have “c+ 3 ∗ 0 = c+ 0"

by (rule_tac s = 0 and
t = “3 ∗ 0” in ssubst,
rule mult_zero_right, rule refl)

also have “ ... = 0 + c”
by (rule add.commute)

also have “ ... = c” by (rule add_0)
finally have “c+ 3 ∗ 0 = c”

by (rule trans, rule_tac refl)
then have “∃ b. c+ 3 ∗ b = c”

by (rule exI)
then show “∃ a b. a+ 3 ∗ b = c”

by (rule exI)
qed

With subst:

lemma “∀c :: int. ∃a b. a+ 3 ∗ b = c"
proof

fix c :: int
have “c+ 3 ∗ 0 = c+ 0"

by (subst mult_zero_right,
rule refl)

also have “ ... = 0 + c”
by (rule add.commute)

also have “ ... = c” by (rule add_0)
finally have “c+ 3 ∗ 0 = c”

by (rule trans, rule_tac refl)
then have “∃ b. c+ 3 ∗ b = c”

by (rule exI)
then show “∃ a b. a+ 3 ∗ b = c”

by (rule exI)
qed



Useful attributes to use with subst

symmetric: This swaps the left and right hand sides of the
equality in theorem.
Usage: subst theorem[symmetric]

asm: This allows substitution into the assumption rather
than the conclusion.
Usage: subst(asm) theorem

n, where n is a natural number : This allows
substitution with the nth occurrence in the goal of an
expression that can be unified with the left-hand side of
theorem.
Usage: subst(n) theorem



Reasoning with equality (=)

Output:
No subgoals!

mult_zero_right: a * 0
= 0

add_0: 0 + a = a
add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply (simp only: mult_zero_right add.commute add_0)
done

Method simp does substitution automatically (given the right
rules!).



Reasoning with equality (=)

Output:
No subgoals!

mult_zero_right: a * 0
= 0

add_0: 0 + a = a
add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule_tac x = c in exI)
apply (rule_tac x = 0 in exI)
apply simp
done

Method simp does substitution automatically (given the right
rules!).

...and the right rules are already in the Main library.



Isabelle’s powerful tools

• simp: rewriting using equations.
Uses: apply simp

apply (simp add: eq1 ... eqn)
apply (simp only: eq1 ... eqn)
apply (simp del: eq1 ... eqn)

• auto: rewriting + proof search (using classical logic).
Uses: apply auto

apply (auto simp add: eq1 ... eqn)
apply (auto simp only: eq1 ... eqn)
apply (auto simp del: eq1 ... eqn)

• Others: blast, fast, force, fastforce, safe, algebra, linarith,
arith, presburger, meson, metis.



Isabelle’s powerful tools

• simp: rewriting using equations.
Uses: apply simp

apply (simp add: eq1 ... eqn)
apply (simp only: eq1 ... eqn)
apply (simp del: eq1 ... eqn)

• auto: rewriting + proof search (using classical logic).
Uses: apply auto

apply (auto simp add: eq1 ... eqn)
apply (auto simp only: eq1 ... eqn)
apply (auto simp del: eq1 ... eqn)

• Others: blast, fast, force, fastforce, safe, algebra, linarith,
arith, presburger, meson, metis.



Isabelle’s powerful tools

• simp: rewriting using equations.
Uses: apply simp

apply (simp add: eq1 ... eqn)
apply (simp only: eq1 ... eqn)
apply (simp del: eq1 ... eqn)

• auto: rewriting + proof search (using classical logic).
Uses: apply auto

apply (auto simp add: eq1 ... eqn)
apply (auto simp only: eq1 ... eqn)
apply (auto simp del: eq1 ... eqn)

• Others: blast, fast, force, fastforce, safe, algebra, linarith,
arith, presburger, meson, metis.



Isabelle’s powerful tools

Sledgehammer

• Tool for invoking external provers.
• Isabelle should not just trust external provers.
• Sledgehammer tries to reconstruct proof inside Isabelle.
• Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj_on f A =⇒
∃g. g′f ′A ⊆ A ∧ (∀a ∈ A. g(f a) = a) ∧ (∀b ∈ A. f(g(f b)) = f b)”



Isabelle’s powerful tools

Sledgehammer

• Tool for invoking external provers.

• Isabelle should not just trust external provers.
• Sledgehammer tries to reconstruct proof inside Isabelle.
• Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj_on f A =⇒
∃g. g′f ′A ⊆ A ∧ (∀a ∈ A. g(f a) = a) ∧ (∀b ∈ A. f(g(f b)) = f b)”



Isabelle’s powerful tools

Sledgehammer

• Tool for invoking external provers.
• Isabelle should not just trust external provers.

• Sledgehammer tries to reconstruct proof inside Isabelle.
• Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj_on f A =⇒
∃g. g′f ′A ⊆ A ∧ (∀a ∈ A. g(f a) = a) ∧ (∀b ∈ A. f(g(f b)) = f b)”



Isabelle’s powerful tools

Sledgehammer

• Tool for invoking external provers.
• Isabelle should not just trust external provers.
• Sledgehammer tries to reconstruct proof inside Isabelle.

• Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj_on f A =⇒
∃g. g′f ′A ⊆ A ∧ (∀a ∈ A. g(f a) = a) ∧ (∀b ∈ A. f(g(f b)) = f b)”



Isabelle’s powerful tools

Sledgehammer

• Tool for invoking external provers.
• Isabelle should not just trust external provers.
• Sledgehammer tries to reconstruct proof inside Isabelle.
• Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj_on f A =⇒
∃g. g′f ′A ⊆ A ∧ (∀a ∈ A. g(f a) = a) ∧ (∀b ∈ A. f(g(f b)) = f b)”



Isabelle’s powerful tools

Sledgehammer

• Tool for invoking external provers.
• Isabelle should not just trust external provers.
• Sledgehammer tries to reconstruct proof inside Isabelle.
• Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj_on f A =⇒
∃g. g′f ′A ⊆ A ∧ (∀a ∈ A. g(f a) = a) ∧ (∀b ∈ A. f(g(f b)) = f b)”
sledgehammer



Isabelle’s powerful tools

Sledgehammer

• Tool for invoking external provers.
• Isabelle should not just trust external provers.
• Sledgehammer tries to reconstruct proof inside Isabelle.
• Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj_on f A =⇒
∃g. g′f ′A ⊆ A ∧ (∀a ∈ A. g(f a) = a) ∧ (∀b ∈ A. f(g(f b)) = f b)”
by (metis order_refl the_inv_into_f_f the_inv_into_onto)



Isabelle’s powerful tools

Useful commands:

• try0: tries a bunch of internal provers (auto, simp, . . .).

• try: try0 + sledgehammer + counterexample checkers!

• Use them just like sledgehammer.



Isabelle’s powerful tools

Useful commands:

• try0: tries a bunch of internal provers (auto, simp, . . .).

• try: try0 + sledgehammer + counterexample checkers!

• Use them just like sledgehammer.



Isabelle’s powerful tools

Useful commands:

• try0: tries a bunch of internal provers (auto, simp, . . .).

• try: try0 + sledgehammer + counterexample checkers!

• Use them just like sledgehammer.



Isabelle’s powerful tools

Useful commands:

• try0: tries a bunch of internal provers (auto, simp, . . .).

• try: try0 + sledgehammer + counterexample checkers!

• Use them just like sledgehammer.



Part 2: Geometry with order and signed areas [60%]

• Getting familiar with axiomatic systems.
• In particular, Isabelle’s locales.
• We will define familiar geometric objects in terms of new
concepts (order, signed area).

• It will help if we relate the formal statements to our
geometric intuition.



Part 2: Geometry with order and signed areas [60%]

• Getting familiar with axiomatic systems.

• In particular, Isabelle’s locales.
• We will define familiar geometric objects in terms of new
concepts (order, signed area).

• It will help if we relate the formal statements to our
geometric intuition.



Part 2: Geometry with order and signed areas [60%]

• Getting familiar with axiomatic systems.
• In particular, Isabelle’s locales.

• We will define familiar geometric objects in terms of new
concepts (order, signed area).

• It will help if we relate the formal statements to our
geometric intuition.



Part 2: Geometry with order and signed areas [60%]

• Getting familiar with axiomatic systems.
• In particular, Isabelle’s locales.
• We will define familiar geometric objects in terms of new
concepts (order, signed area).

• It will help if we relate the formal statements to our
geometric intuition.



Part 2: Geometry with order and signed areas [60%]

• Getting familiar with axiomatic systems.
• In particular, Isabelle’s locales.
• We will define familiar geometric objects in terms of new
concepts (order, signed area).

• It will help if we relate the formal statements to our
geometric intuition.



Signed area
• You will be given a locale defining a function ∆.

• We can interpret ∆x y z as the signed area of a triangle
defined by the three arguments, x, y and z, of ∆.

• The signed area of a triangle is just the area of that
triangle, multiplied by −1 if the points of that triangle are
traversed clockwise, and by 1 otherwise.



Signed area
• You will be given a locale defining a function ∆.
• We can interpret ∆x y z as the signed area of a triangle
defined by the three arguments, x, y and z, of ∆.

• The signed area of a triangle is just the area of that
triangle, multiplied by −1 if the points of that triangle are
traversed clockwise, and by 1 otherwise.



Signed area
• You will be given a locale defining a function ∆.
• We can interpret ∆x y z as the signed area of a triangle
defined by the three arguments, x, y and z, of ∆.

• The signed area of a triangle is just the area of that
triangle, multiplied by −1 if the points of that triangle are
traversed clockwise, and by 1 otherwise.



Relating the formal statement to geometry
• Take as an example Axiom 2 from the locale:
"x 6=y =⇒∃z. (R::real)= ∆x y z".

• Geometrically it says given two distinct points we can
construct a triangle with any area (even negative)



Relating the formal statement to geometry
• Take as an example Axiom 2 from the locale:
"x 6=y =⇒∃z. (R::real)= ∆x y z".

• Geometrically it says given two distinct points we can
construct a triangle with any area (even negative)



Relating the formal statement to geometry
• Take as an example Axiom 2 from the locale:
"x 6=y =⇒∃z. (R::real)= ∆x y z".

• Geometrically it says given two distinct points we can
construct a triangle with any area (even negative)



Hints for proving together with Isabelle

• Always solve the problems in your head (or on paper),
before applying rules!

• If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

• This gives the provers a hint.
• Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”] Q
sledgehammer.

• When in doubt add brackets.
• When in doubt add type constraints.
• During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

• Counterexample checkers (Quickcheck, Nitpick) can help
you realise you made a wrong turn. Either call them
directly (typing quickcheck or nitpick), or simply type
try. (Especially important for knights and knaves).



Hints for proving together with Isabelle

• Always solve the problems in your head (or on paper),
before applying rules!

• If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

• This gives the provers a hint.

• Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”] Q
sledgehammer.

• When in doubt add brackets.
• When in doubt add type constraints.
• During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

• Counterexample checkers (Quickcheck, Nitpick) can help
you realise you made a wrong turn. Either call them
directly (typing quickcheck or nitpick), or simply type
try. (Especially important for knights and knaves).



Hints for proving together with Isabelle

• Always solve the problems in your head (or on paper),
before applying rules!

• If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

• This gives the provers a hint.
• Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”] Q
sledgehammer.

• When in doubt add brackets.
• When in doubt add type constraints.
• During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

• Counterexample checkers (Quickcheck, Nitpick) can help
you realise you made a wrong turn. Either call them
directly (typing quickcheck or nitpick), or simply type
try. (Especially important for knights and knaves).



Hints for proving together with Isabelle

• Always solve the problems in your head (or on paper),
before applying rules!

• If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

• This gives the provers a hint.
• Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”] Q
sledgehammer.

• When in doubt add brackets.

• When in doubt add type constraints.
• During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

• Counterexample checkers (Quickcheck, Nitpick) can help
you realise you made a wrong turn. Either call them
directly (typing quickcheck or nitpick), or simply type
try. (Especially important for knights and knaves).



Hints for proving together with Isabelle

• Always solve the problems in your head (or on paper),
before applying rules!

• If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

• This gives the provers a hint.
• Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”] Q
sledgehammer.

• When in doubt add brackets.
• When in doubt add type constraints.

• During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

• Counterexample checkers (Quickcheck, Nitpick) can help
you realise you made a wrong turn. Either call them
directly (typing quickcheck or nitpick), or simply type
try. (Especially important for knights and knaves).



Hints for proving together with Isabelle

• Always solve the problems in your head (or on paper),
before applying rules!

• If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

• This gives the provers a hint.
• Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”] Q
sledgehammer.

• When in doubt add brackets.
• When in doubt add type constraints.
• During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

• Counterexample checkers (Quickcheck, Nitpick) can help
you realise you made a wrong turn. Either call them
directly (typing quickcheck or nitpick), or simply type
try. (Especially important for knights and knaves).



Hints for proving together with Isabelle

• Always solve the problems in your head (or on paper),
before applying rules!

• If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

• This gives the provers a hint.
• Preinstantiate variables when trying to use a result in a
proof: using P[where x = “some term”] Q
sledgehammer.

• When in doubt add brackets.
• When in doubt add type constraints.
• During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

• Counterexample checkers (Quickcheck, Nitpick) can help
you realise you made a wrong turn. Either call them
directly (typing quickcheck or nitpick), or simply type
try. (Especially important for knights and knaves).



More hints

• Start early.
• Go to the lab sessions.
• Contact me by email: I.I.Morris@sms.ed.ac.uk.



More hints

• Start early.

• Go to the lab sessions.
• Contact me by email: I.I.Morris@sms.ed.ac.uk.



More hints

• Start early.
• Go to the lab sessions.

• Contact me by email: I.I.Morris@sms.ed.ac.uk.



More hints

• Start early.
• Go to the lab sessions.
• Contact me by email: I.I.Morris@sms.ed.ac.uk.


