
Automated Reasoning

Coursework lecture:
Proving and Reasoning in Isabelle/HOL

Daniel Raggi

18/10/2016



Coursework overview

I Part 1: Propositional and first-order proofs [15%]

I Part 2: Structured proofs & powerful reasoning tools [25%]

I Part 3: Reasoning about Geometries [60%]



Part 1: Propositional and first-order proofs

I Procedural proofs (sequence of rule applications).

I Introduction and elimination rules.

I You should be reasonably skilled with these things by now.
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Part 2: Structured proofs & powerful reasoning tools

I You will solve complex problems.

I Isabelle has a lot of machinery built in for presentation,
interaction and automation.

I Structured proofs (also called declarative);
the name of the language is Isar.

I Powerful automatic tools: simp, auto, safe, blast, fast,
force, fastforce, linarith, arith, presburger,
algebra, meson, metis.

I A link to external provers: sledgehammer.
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Reasoning with equality (=)

Rules:

t = s P s
subst

P t
s = t P s

ssubst
P t

reflt = t
s = t sym
t = s

r = s s = t transr = t

∀x . f x = g x
ext

f = g

Are all of these rules necessary, or can some of them be derived
from the others?
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add 0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”

apply (rule allI)
apply (rule tac x = c in exI)
apply (rule tac x = 0 in exI)
apply (rule tac s = 0 and t = “3 ∗ 0” in ssubst)
apply (rule mult zero right)
apply (rule tac s = “0 + c” and t = “c + 0” in ssubst)
apply (rule add.commute)
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Output:
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mult zero right: a * 0 = 0
add 0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule tac x = c in exI)
apply (rule tac x = 0 in exI)
apply (subst mult zero right)
apply (subst add.commute)
apply (rule add 0)
done

We can save all that variable instantiation using subst; rewriting.



Reasoning with equality (=)

Output:
No subgoals!

mult zero right: a * 0 = 0
add 0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule tac x = c in exI)
apply (rule tac x = 0 in exI)
apply (simp only: mult zero right add.commute add 0)
done

Method simp does that automatically (given the right rules!).



Reasoning with equality (=)

Output:
No subgoals!

mult zero right: a * 0 = 0
add 0: 0 + a = a

add.commute: a + b = b + a

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
apply (rule allI)
apply (rule tac x = c in exI)
apply (rule tac x = 0 in exI)
apply simp
done

Method simp does that automatically (given the right rules!).
...and the right rules are already in the Main library.



Isabelle’s powerful tools

I simp: rewriting using equations.
Uses: apply simp

apply (simp add: eq1 ... eqn)

apply (simp only: eq1 ... eqn)

apply (simp del: eq1 ... eqn)

I auto: rewriting + proof search (using classical logic).
Uses: apply auto

apply (auto simp add: eq1 ... eqn)

apply (auto simp only: eq1 ... eqn)

apply (auto simp del: eq1 ... eqn)

I Others: blast, fast, force, fastforce, safe, algebra, linarith,
arith, presburger, meson, metis.
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Isabelle’s powerful tools

Sledgehammer

I Tool for invoking external provers.

I Isabelle should not just trust external provers.

I Sledgehammer tries to reconstruct proof inside Isabelle.

I Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj on f A =⇒
∃g . g ‘f ‘A ⊆ A ∧ (∀a ∈ A. g(f a) = a) ∧ (∀b ∈ A. f (g(f b)) = f b)”
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Isabelle’s powerful tools

Sledgehammer

I Tool for invoking external provers.

I Isabelle should not just trust external provers.

I Sledgehammer tries to reconstruct proof inside Isabelle.

I Usually, metis will do the job, given a list of lemmas
suggested by sledgehammer.

lemma “inj on f A =⇒
∃g . g ‘f ‘A ⊆ A ∧ (∀a ∈ A. g(f a) = a) ∧ (∀b ∈ A. f (g(f b)) = f b)”

by (metis order refl the inv into f f the inv into onto)



Isabelle’s powerful tools

Useful commands:

I try0: tries a bunch of internal provers (auto, simp, . . .).

I try: try0 + sledgehammer + counterexample checkers!

I Use them just like sledgehammer.
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Structured proof

I The proofs you can build right now read like a list of
instructions.

I Mathematical proofs (and written arguments in general) don’t
look like that!

I Structured proofs look much more like maths.

lemma “∀c :: int. ∃ a b. a + 3 ∗ b = c”
proof (writing nothing after ‘proof’ applies a default rule; e.g. allI)

fix c ::int
have “c + 3 ∗ 0 = c” by simp
thus “∃ a b. a + 3 ∗ b = c” by blast

qed
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Structured proof

Example (using keywords assume, obtain and hence/then
have/from · · · have):

lemma “∀c :: int. (∃a. 4 ∗ a = c) −→ (∃b. 2 ∗ b = c)”
proof (rule allI, rule impI)

fix c :: int

assume “∃a. 4 ∗ a = c”
then obtain a where P: “4 ∗ a = c” by auto

hence “2 ∗ (2 ∗ a) = c” by simp

thus “∃b. 2 ∗ b = c” by blast

qed
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Structured proof

Example (using keywords assume, obtain and hence/then
have/from · · · have):

lemma “∀c :: int. (∃a. 4 ∗ a = c) −→ (∃b. 2 ∗ b = c)”
proof (rule allI, rule impI)

fix c :: int

assume “∃a. 4 ∗ a = c”
then obtain a where P: “4 ∗ a = c” by auto
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Structured proof

Yet another way to write the proof (with from assms or using
assms):

lemma mylemma:
fixes c :: int

assumes “∃a. 4 ∗ a = c”
shows “∃b. 2 ∗ b = c”

proof -
from assms obtain a where “4 ∗ a = c” by auto

hence “2 ∗ (2 ∗ a) = c” by simp

thus “∃b. 2 ∗ b = c” by blast

qed



Structured proof

Yet another way to write the proof (with from assms or using
assms):

lemma mylemma:
fixes c :: int

assumes “∃a. 4 ∗ a = c”
shows “∃b. 2 ∗ b = c”

proof -
obtain a where “4 ∗ a = c” using assms by auto

hence “2 ∗ (2 ∗ a) = c” by simp

thus “∃b. 2 ∗ b = c” by blast

qed



Structured proof

There is also calculation using ‘...’, moreover and ultimately.

have “a = b” by <some method>
moreover have “... = c” by <some method>
moreover have “... = d” by <some method>
ultimately show “a = d” by auto

Moreover collects results and ultimately uses them (like using
keyword from). This corresponds to:

a = b

= c

= d .



Recursion and Induction

I Recursive datatypes are part of Isabelle. Naturals and Lists
are represented this way.

I Functions can be defined recursively (e.g., using primrec).

I Induction can be used to prove things about recursive
datatypes!

P(0) ∀n. (P n −→ P (Suc n))
induction (of N)∀n. P n



Recursion and Induction

I Recursive datatypes are part of Isabelle. Naturals and Lists
are represented this way.

I Functions can be defined recursively (e.g., using primrec).

I Induction can be used to prove things about recursive
datatypes!

P(0) ∀n. (P n −→ P (Suc n))
induction (of N)∀n. P n



Recursion and Induction

I Recursive datatypes are part of Isabelle. Naturals and Lists
are represented this way.

I Functions can be defined recursively (e.g., using primrec).

I Induction can be used to prove things about recursive
datatypes!

P(0) ∀n. (P n −→ P (Suc n))
induction (of N)∀n. P n



Recursion and Induction

I Recursive datatypes are part of Isabelle. Naturals and Lists
are represented this way.

I Functions can be defined recursively (e.g., using primrec).

I Induction can be used to prove things about recursive
datatypes!

P(0) ∀n. (P n −→ P (Suc n))
induction (of N)∀n. P n



Recursion and Induction

I Recursive datatypes are part of Isabelle. Naturals and Lists
are represented this way.

I Functions can be defined recursively (e.g., using primrec).

I Induction can be used to prove things about recursive
datatypes!

P(0) ∀n. (P n −→ P (Suc n))
induction (of N)∀n. P n



Recursion and Induction

Defining a function recursively: primrec or fun.

primrec listsum :: “nat list ⇒ nat” where
“listsum (h::t) = h + listsum t”
| “listsum [] = 0”

primrec mymult :: “nat ⇒ nat ⇒ nat” where
“mymult (Suc n) m = m + mymult n m”
| “mymult 0 m = 0”

Isabelle adds simplification rules automatically for recursive
definitions. For this example: listsum.simps and mymult.simps



Recursion and Induction

Defining a function recursively: primrec or fun.

primrec listsum :: “nat list ⇒ nat” where
“listsum (h::t) = h + listsum t”
| “listsum [] = 0”

primrec mymult :: “nat ⇒ nat ⇒ nat” where
“mymult (Suc n) m = m + mymult n m”
| “mymult 0 m = 0”

Isabelle adds simplification rules automatically for recursive
definitions. For this example: listsum.simps and mymult.simps



Recursion and Induction

Defining a function recursively: primrec or fun.

primrec listsum :: “nat list ⇒ nat” where
“listsum (h::t) = h + listsum t”
| “listsum [] = 0”

primrec mymult :: “nat ⇒ nat ⇒ nat” where
“mymult (Suc n) m = m + mymult n m”
| “mymult 0 m = 0”

Isabelle adds simplification rules automatically for recursive
definitions. For this example: listsum.simps and mymult.simps



Recursion and Induction

Defining a function recursively: primrec or fun.

primrec listsum :: “nat list ⇒ nat” where
“listsum (h::t) = h + listsum t”
| “listsum [] = 0”

primrec mymult :: “nat ⇒ nat ⇒ nat” where
“mymult (Suc n) m = m + mymult n m”
| “mymult 0 m = 0”

Isabelle adds simplification rules automatically for recursive
definitions. For this example: listsum.simps and mymult.simps



Recursion and Induction

A proof by induction:

lemma “even (x2 + x ::nat)”
proof (induction x)

case 0
show “even (02 + 0 :: nat)” by simp

case (Suc x)
from Suc obtain y where

P: “2 ∗ y = x2 + x” by (metis evenE)
have “((x :: nat) + 1)2 + x + 1 = (x2 + 2 ∗ x + 1) + x + 1” by algebra
moreover have “... = x2 + 2 ∗ x + x + 2” by simp
moreover have “... = x2 + x + (2 ∗ x + 2)” by simp
moreover have “... = 2 ∗ y + 2 ∗ x + 2” using P by simp
moreover have “... = 2 ∗ (y + x + 1)” by simp
ultimately have “((x :: nat) + 1)2 + x + 1 = 2 ∗ (y + x + 1)” by simp
thus “even ((Suc x)2 + Suc x)” by simp

qed
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Hints for proving together with Isabelle

I Always solve the problems in your head (or on paper), before
applying rules!

I If in your proof in paper it’s clear that results P and Q are
used in the proof, then try using P Q sledgehammer

I This gives the provers a hint.

I Preinstantiate variables when trying to use a result in a proof:
using P[where x = “some term”] Q sledgehammer.

I When in doubt add brackets.

I When in doubt add type constraints.

I During a proof, if you know your goal is unprovable (e.g.,
false), go back one step!

I Counterexample checkers (Quickcheck, Nitpick) can help you
realise you made a wrong turn. Either call them directly
(typing quickcheck or nitpick), or simply type try.
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