Recap

- Previously:
 - Model Checking CTL formulas

- This time:
 - Model Checking LTL
 - Language-theoretic viewpoint
 - From LTL formulas to automata (examples)
LTL Semantics recap

Definition (Transition System)
A *transition system* $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$ consists of:

- S: a finite set of states
- $S_0 \subseteq S$: a set of initial states
- $\rightarrow \subseteq S \times S$: transition relation
- $L : S \rightarrow \mathcal{P}(\text{Atom})$: a labelling function

such that $\forall s_1. \exists s_2. s_1 \rightarrow s_2$

Definition (Path)
A *path* π in a transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$ is an infinite sequence of states s_0, s_1, \ldots such that $s_0 \in S_0$ and $\forall i \geq 0. s_i \rightarrow s_{i+1}$. Paths are written as: $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$
The LTL Model Checking Problem

LTL model checking seeks to answer the question:

Does $\mathcal{M} \models^0 \phi$ hold?

or, equivalently:

Does $\forall \pi \in \text{Paths}(\mathcal{M}). \pi \models^0 \phi$ hold?

- The universal quantification is over the *infinite* set of paths and each path is infinitely long
- How can we check infinitely many paths?
- CTL: use a fixed point characterisation of the sets of *states*
- LTL: sets of *paths*; a path is a sequence of symbols ...
 ... so use a *language-theoretic* approach.
The language accepted by a transition system

Fix a transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$

Let us consider the set of states S as an *alphabet* Σ.

Each infinite path π is then a word in the set Σ^ω.

The set of all paths of \mathcal{M} is the language $\mathcal{L}(\mathcal{M})$ accepted by \mathcal{M}.
The language accepted by a transition system

Fix a transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$

Let us consider the set of states S as an alphabet Σ.

Each infinite path π is then a word in the set Σ^ω.

The set of all paths of \mathcal{M} is the language $\mathcal{L}(\mathcal{M})$ accepted by \mathcal{M}.

Example:

<table>
<thead>
<tr>
<th>\mathcal{M}</th>
<th>$\mathcal{L}(\mathcal{M})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \rightarrow \rightarrow$</td>
<td>${abcccc..., ababcccc..., abababcccc,..., ...}$</td>
</tr>
<tr>
<td>$b \rightarrow \rightarrow \rightarrow$</td>
<td></td>
</tr>
<tr>
<td>$c \rightarrow \rightarrow$</td>
<td></td>
</tr>
</tbody>
</table>
Language of an LTL formula

Let ϕ be an LTL formula, and S be the set of states of a model with the same set of atomic propositions as ϕ.

Define the language $\mathcal{L}(\phi)$ of ϕ as:

$$\mathcal{L}(\phi) = \{ \pi \in S^\omega \mid \pi \models^0 \phi \}$$
Language of an LTL formula

Let ϕ be an LTL formula, and S be the set of states of a model with the same set of atomic propositions as ϕ.

Define the **language $L(\phi)$ of ϕ** as:

$$L(\phi) = \{ \pi \in S^\omega | \pi \models^0 \phi \}$$

Alternate definitions of the language of a transition system and of a formula use $\mathcal{P}(\text{Atom})$ as the alphabet instead of the set of states S (see H&R book).

If the state has a boolean component for each element of Atom, then the definitions are equivalent.

In NuSMV, with integer range, array and word types for state components, there is a rich language of atomic propositions and $\mathcal{P}(\text{Atom})$ is usually larger than S.
Language-theoretic presentation of validity

Recall: LTL model checking seeks to answer the question:

\[\mathcal{M} \models^0 \phi \] hold?

or, equivalently:

\[\forall \pi \in \text{Paths}(\mathcal{M}). \; \pi \models^0 \phi \] hold?

Using the presentation of transitions systems and formulas as languages, this can now be phrased as:

\[\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\phi) \]

or, equivalently:

\[\mathcal{L}(\mathcal{M}) \cap \overline{\mathcal{L}(\phi)} = \emptyset \]

where \(\overline{X} \) means \(S^\omega - X \).
Languages via automata

\(\mathcal{L}(M) \) is defined in terms of a finite state transition system. Can LTL formulas be described in the same way?
Languages via automata

$L(\mathcal{M})$ is defined in terms of a finite state transition system. Can LTL formulas be described in the same way?

No. In general, $L(\phi)$ cannot be represented by a transition system. Can be represented by a related concept called a *Büchi Automaton*.
Languages via automata

$L(M)$ is defined in terms of a finite state transition system. Can LTL formulas be described in the same way?

No. In general, $L(\phi)$ cannot be represented by a transition system. Can be represented by a related concept called a Büchi Automaton.

A (non-deterministic) Büchi automaton $\langle S, \Sigma, \rightarrow, S_0, A \rangle$ consists of:

- S: a finite set of states
- Σ: an alphabet
- $\rightarrow \subseteq S \times \Sigma \times S$: transition relation
- $S_0 \subseteq S$: set of initial states
- $A \subseteq S$: set of accepting states

An infinite word is **accepted** by a Büchi automaton iff there is a run of the automaton on which some accepting state is visited infinitely often.
Example Büchi automata

Here, $\neg a$ means “any symbol that isn’t a”. States marked with \odot are accepting.

F a:

![Diagram for F a]

G a:

![Diagram for G a]

a U b:

![Diagram for a U b]

(Can also do them without the error paths.)

For the general construction for any formula ϕ, see H&R, Section 3.6.3.
LTL Model Checking Idea

We reformulated the LTL model checking problem to:

\[\mathcal{L}(\mathcal{M}) \cap \overline{\mathcal{L}(\phi)} = \emptyset \]

Now:

1. Observe that \(\overline{\mathcal{L}(\phi)} = \mathcal{L}(\neg \phi) \)
2. Let \(A_\phi \) be a Büchi automaton such that \(\mathcal{L}(\phi) = \mathcal{L}(A_\phi) \).
3. For a suitable notion of composition \(\mathcal{M} \otimes A \) of a transition system \(\mathcal{M} \) and a Büchi automaton \(A \), we have that

\[\mathcal{L}(\mathcal{M} \otimes A) = \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(A) \]

4. So, to check \(\mathcal{M} \models^0 \phi \), instead check

\[\mathcal{L}(\mathcal{M} \otimes A_{\neg \phi}) = \emptyset \]

5. Use *Fair CTL model checking* to check this last property. See H&R.
Emulating Büchi automata in NuSMV

Here is a transition system and LTL formula emulating a Büchi automaton for checking $F \neg p$:

MODULE formula(sys)

VAR
 st : { 0, 1 };

ASSIGN
 init(st) := 0;
 next(st) := case
 st = 0 & sys.p : 0;
 st = 0 & !sys.p : 1;
 st = 1 : 1;
 esac;

-- Accepting states: {1}.
LTLSPEC ! G F st = 1; -- If true, no accepting paths

-- How to check EG TRUE for fair paths in NuSMV
-- FAIRNESS st = 1;
-- CTLSPEC FALSE;
Composing Büchi automaton and transition system

This composition checks LTL property $G \ p$ of the model:

```
MODULE model
  VAR
    st : 0..2;
  ASSIGN
    init(st) := 0;
    next(st) := case
      st = 0 : {1,2};
      st = 1 : 1;
      st = 2 : 2;
      esac;
  DEFINE
    p := st = 0 | st = 1;
    -- p := TRUE

MODULE main
  VAR
    m : model;
    f : formula(m);
```
Model Checking Results 1

With this definition in the model:

\[p := st = 0 \text{ } | \text{ } st = 1; \]

we get:

Trace Type: Counterexample

\[\rightarrow \text{State: 1.1} \leftarrow \]

\[\begin{align*}
 m.st &= 0 \\
 f.st &= 0 \\
 m.p &= \text{TRUE}
\end{align*} \]

\[\rightarrow \text{State: 1.2} \leftarrow \]

\[\begin{align*}
 m.st &= 2 \\
 m.p &= \text{FALSE}
\end{align*} \]

-- Loop starts here

\[\rightarrow \text{State: 1.3} \leftarrow \]

\[f.st = 1 \]

-- Loop starts here

\[\rightarrow \text{State: 1.4} \leftarrow \]

\[\rightarrow \text{State: 1.5} \leftarrow \]
Model Checking Results 2

With this definition in the model:

\[p := \text{TRUE}; \]

we get:

\[\text{-- specification } !\left(G \left(F \text{ st} = 1 \right) \right) \text{ IN f is true} \]
Summary

▶ LTL Model Checking (H&R 3.6.2, 3.6.3)
 ▶ Transition systems and formulas as languages
 ▶ Formulas as Büchi automata
 ▶ Simulating Büchi automata in NuSMV

▶ Next time:
 ▶ Guest Lecture: Dr. Brian Campbell
 “Automated Reasoning for Testing Specifications and Programs”

▶ Next Friday: Binary Decision Diagrams

 [BDDs are] one of the only really fundamental data structures that came out in the last twenty-five years.
 — Donald Knuth “Fun with Binary Decision Diagrams”