Recap

This lecture:

- Solving equations by Unification
- Matching and Unification algorithms
- Building-in axioms: E-Unification
Motivation

Unification: finding a common instance of two terms

Informally: we want to make two terms identical by finding the most general substitution of terms for variables.

Why?

- Applying rules in Isabelle: working out what \(?P, ?Q, ?x \) are
- Heavily used in automated first-order theorem proving to postpone decisions during proof search: PROLOG, tableau provers, resolution provers
- Also used in most type inference algorithms (Haskell, OCaml, SML, Scala, ...)

A First Look at Unification

Unification: finding a common instance of two terms

Informally: we want to make two terms identical by finding the most general substitution of terms for variables.

Example
Can we make these pairs of terms equal by finding a common instance (assuming X, Y are variables and a, b are constants)?

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
<th>Yes/No</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, b)$ and $f(a, Y)$</td>
<td></td>
<td>Yes: $[a/X, b/Y]$</td>
<td>instance: $f(a, b)$</td>
</tr>
<tr>
<td>$f(X, X)$ and $f(a, b)$</td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>$f(X, X)$ and $f(Y, g(Y))$</td>
<td></td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Only (meta-)variables (X, Y, Z, …) can be replaced by other terms.
Matching

Problem

Given pattern and target find a substitution such that:

\[\text{pattern}[\text{substitution}] \equiv \text{target} \]

where \(\equiv \) means that the terms are identical.

Example

\[(s(X) + Y)[0/X, s(0)/Y] \equiv (s(0) + s(0))\]

How we do find an adequate substitution?

We view matching as equation solving.
Matching (continued)

Discover a substitution by decomposing the equation to be solved along the term trees:

\[(s(X) + Y) \equiv (s(0) + s(0))\]
\[\downarrow\]
\[(s(X) \equiv s(0)) \land (Y \equiv s(0))\]
\[\downarrow\]
\[(X \equiv 0) \land (Y \equiv s(0))\]
Some Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overrightarrow{t}</td>
<td>$t_1, \ldots, t_n \ (t \geq 1)$</td>
</tr>
<tr>
<td>$\bigwedge_i t_i$</td>
<td>$t_1 \land \ldots \land t_n$</td>
</tr>
<tr>
<td>vars(t)</td>
<td>the set of free variables in t</td>
</tr>
<tr>
<td>Vars</td>
<td>the set of (all) free variables</td>
</tr>
</tbody>
</table>

vars($f(X, Y, g(a, Z, X))$) = \{X, Y, Z\}

vars($f(a, b, c)$) = \{\}
Matching as Equation Solving

Start with the *pattern* and *target* standardised apart:

\[\text{vars}(\text{pattern}) \cap \text{vars}(\text{target}) = \{\} \]

Goal is to solve for \(\text{vars}(\text{pattern}) \) in equation \(\text{pattern} \equiv \text{target} \).

Strategy is to use transformation rules:

\[
\begin{align*}
\text{pattern} & \equiv \text{target} \\
\downarrow \\
\vdots \\
\downarrow \\
X_1 = t_1 \land \ldots \land X_n = t_n
\end{align*}
\]

Resulting substitution is \([t_1/X_1, \ldots, t_n/X_n]\).

Transformations end in failure if no match is possible.
Transformation Rules for Matching (Examples)

Decompose

\[s(X) + Y \equiv s(0) + s(0) \]

\[\Downarrow \]

\[s(X) \equiv s(0) \land Y \equiv s(0) \]

Conflict

\[s(X) + y \equiv s(0) \]

\[\Downarrow \]

\[\text{fail} \]

Cannot match: \(s \not\equiv + \)

Eliminate

\[(X + Y \equiv s(0) + 0) \land (Y \equiv 0) \]

\[\Downarrow \]

\[(X + 0 \equiv s(0) + 0) \land (Y \equiv 0) \]

Delete

\[X \equiv 0 \land (s(0) + 0 \equiv s(0) + 0) \]

\[\Downarrow \]

\[X \equiv 0 \]
Transformation Rules for Matching

Assumptions: s and t are arbitrary terms and are standardised apart.

<table>
<thead>
<tr>
<th>Name</th>
<th>Before</th>
<th>After</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decompose</td>
<td>$P \land f(\overrightarrow{s}) \equiv f(\overrightarrow{t})$</td>
<td>$P \land \bigwedge_i s_i \equiv t_i$</td>
<td></td>
</tr>
<tr>
<td>Conflict</td>
<td>$P \land f(\overrightarrow{s}) \equiv g(\overrightarrow{t})$</td>
<td>fail</td>
<td>$f \neq g$</td>
</tr>
<tr>
<td>Eliminate</td>
<td>$P \land X \equiv t$</td>
<td>$P[t/X] \land X \equiv t$</td>
<td>$X \in \text{vars}(P)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$P \land t \equiv t$</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm terminates when no further rules apply and fail has not occurred.

The algorithm terminates with a match iff there is one.

The algorithm may terminate without a match: e.g., $X = a \land b = Y$
Unification

Unification is two-way matching (there is no distinction between pattern and target).

\[term_1[\text{substitution}] \equiv term_2[\text{substitution}] \]

Example

What substitution makes \((s(X) + s(0))\) and \((s(0) + Y)\) identical?

\[\theta = \{0/X, s(0)/Y\} \]

We need to add extra rules to the matching algorithm:

\[
\begin{align*}
(s(X) + s(0)) & \equiv (s(0) + Y) \\
\downarrow & \quad \text{Decompose} \\
s(X) & \equiv s(0) \land s(0) \equiv Y \\
\downarrow & \quad \text{Decompose} \\
X & \equiv 0 \land s(0) \equiv Y \\
\downarrow & \quad \text{Switch} \\
X & \equiv 0 \land Y \equiv s(0)
\end{align*}
\]
New Transformation Rules

Switch

\[t \equiv X \]

\[\downarrow \]

\[X \equiv t \]

Switch rule applies only if \(lhs \) is not originally a variable

Coalesce

\[X \equiv Y + 1 \land Y \equiv X \]

\[\downarrow \]

\[X \equiv X + 1 \land Y \equiv X \]

Similar to Eliminate, except both \(lhs \) and \(rhs \) are variables

Occurs Check

\[X \equiv X + 1 \]

\[\downarrow \]

fail

\(lhs \) cannot occur in \(rhs \)

Example

\[f(X, X) \equiv f(Y, Y + 1) \]

\[\downarrow \text{Decompose} \]

\[X \equiv Y \land X \equiv Y + 1 \]

\[\downarrow \text{Coalesce} \]

\[X \equiv Y \land Y \equiv Y + 1 \]

\[\downarrow \text{Occurs check} \]

fail

\[p(X) \land X \equiv X + 1 \]

\[\downarrow \text{Eliminate} \]

\[p(X + 1) \land X \equiv X + 1 \]

\[\downarrow \text{Eliminate} \]

\[p((X + 1) + 1) \land X \equiv X + 1 \]

\[\downarrow \text{Eliminate} \]

\[\ldots \]

Non-termination can result without the occurs check.
Unification Algorithm

Assumptions: \(s \) and \(t \) are arbitrary terms and \(\text{Vars} = \text{vars}(s) \cup \text{vars}(t) \).

<table>
<thead>
<tr>
<th>Name</th>
<th>Before</th>
<th>After</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decompose</td>
<td>(P \land f(s) \equiv f(t))</td>
<td>(P \land \bigwedge_i s_i \equiv t_i)</td>
<td></td>
</tr>
<tr>
<td>Conflict</td>
<td>(P \land f(s) \equiv g(t))</td>
<td>fail</td>
<td>(f \neq g)</td>
</tr>
<tr>
<td>Switch</td>
<td>(P \land s \equiv X)</td>
<td>(P \land X \equiv s)</td>
<td>(X \in \text{Vars})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(s \not\in \text{Vars})</td>
</tr>
<tr>
<td>Delete</td>
<td>(P \land s \equiv s)</td>
<td>(P)</td>
<td></td>
</tr>
<tr>
<td>Eliminate</td>
<td>(P \land X \equiv s)</td>
<td>(P[s/X] \land X \equiv s)</td>
<td>(X \in \text{vars}(P))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(X \not\in \text{vars}(s))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(s \not\in \text{Vars})</td>
</tr>
<tr>
<td>Occurs Check</td>
<td>(P \land X \equiv s)</td>
<td>fail</td>
<td>(X \in \text{vars}(s))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(s \not\in \text{Vars})</td>
</tr>
<tr>
<td>Coalesce</td>
<td>(P \land X \equiv Y)</td>
<td>(P[Y/X] \land X \equiv Y)</td>
<td>(X, Y \in \text{vars}(P))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(X \neq Y)</td>
</tr>
</tbody>
</table>

- Conditions ensure that at most one rule applies to each conjunct
- Algorithm terminates with success when no further rules apply.
Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition $\phi \circ \theta$ is also a substitution which, for any term t, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$
Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their *composition* $\phi \circ \theta$ is also a substitution which, for any term t, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

Examples:

$$[a/x] \circ [b/y] = [a/x, b/y]$$
Composition of Unifiers (Substitutions)

Definition
If \(\phi \) and \(\theta \) are substitutions then their composition \(\phi \circ \theta \) is also a substitution which, for any term \(t \), satisfies the following property:

\[
t[\phi \circ \theta] \equiv (t[\phi])[\theta]
\]

Examples:
\[
[a/x] \circ [b/y] = [a/x, b/y] \\
[g(y)/x] \circ [b/y] = [g(b)/x, b/y]
\]
Composition of Unifiers (Substitutions)

Definition
If \(\phi \) and \(\theta \) are substitutions then their composition \(\phi \circ \theta \) is also a substitution which, for any term \(t \), satisfies the following property:

\[
 t[\phi \circ \theta] \equiv (t[\phi])[\theta]
\]

Examples:
- \([a/x] \circ [b/y] = [a/x, b/y]\)
- \([g(y)/x] \circ [b/y] = [g(b)/x, b/y]\)
- \([a/x] \circ [b/x] = [a/x]\)
Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition $\phi \circ \theta$ is also a substitution which, for any term t, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

Examples:

$$[a/x] \circ [b/y] = [a/x, b/y]$$
$$[g(y)/x] \circ [b/y] = [g(b)/x, b/y]$$
$$[a/x] \circ [b/x] = [a/x]$$

- Equality of substitutions: $\phi = \theta$ if $x[\phi] = x[\theta]$ for any variable x.
- Properties: $(\phi \circ \theta) \circ \sigma = \phi \circ (\theta \circ \sigma)$, $\phi \circ [] = \phi$ and $[] \circ \phi = \phi$.
- Composition is needed to define the notion of a most general unifier.
Properties of the Unification Algorithm

- The algorithm will find a unifier, if it exists.
- It returns the **most general unifier** (mgu) θ.

Definition

Given any two terms s and t, θ is their mgu if:

$$s[\theta] \equiv t[\theta] \land \forall \phi. \ s[\phi] \equiv t[\phi] \rightarrow \exists \psi. \ \phi = \theta \circ \psi.$$

Consider $g(g(X))$ and $g(Y)$. Is $[g(3)/Y, 3/X]$ a unifier? Is it the mgu?

- mgu is **unique** up to alphabetic variance;
- the algorithm can easily be extended to simultaneous unification on n expressions.
Building-in Axioms

General Scheme:

\[(Ax_1 \cup Ax_2) + unif \implies Ax_1 + unif_{Ax_2}.\]

Some axioms of the theory become built into unification.

Example

Commutative-Unification

\[X + 2 = Y + 3\]

\[\downarrow\]

\[Y = 2 \land X = 3\]

We no longer use \(\equiv\) but =

How do we deal with this?
We can add a new transformation rule (Mutate rule).
Unification Algorithm for Commutativity

<table>
<thead>
<tr>
<th>Name</th>
<th>Before</th>
<th>After</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decompose</td>
<td>$P \land f(\vec{s}) = f(\vec{t})$</td>
<td>$P \land \bigwedge_i s_i = t_i$</td>
<td></td>
</tr>
<tr>
<td>Conflict</td>
<td>$P \land f(\vec{s}) = g(\vec{t})$</td>
<td>fail</td>
<td>$f \neq g$</td>
</tr>
<tr>
<td>Switch</td>
<td>$P \land s = X$</td>
<td>$P \land X = s$</td>
<td>$X \in Vars$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$s \not\in Vars$</td>
</tr>
<tr>
<td>Delete</td>
<td>$P \land s = s$</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Eliminate</td>
<td>$P \land X = s$</td>
<td>$P[s/X] \land X = s$</td>
<td>$X \in \text{vars}(P)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$X \not\in \text{vars}(s)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$s \not\in Vars$</td>
</tr>
<tr>
<td>Check</td>
<td>$P \land X = s$</td>
<td>fail</td>
<td>$X \in \text{vars}(s)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$s \not\in Vars$</td>
</tr>
<tr>
<td>Coalesce</td>
<td>$P \land X = Y$</td>
<td>$P[Y/X] \land X = Y$</td>
<td>$X, Y \in \text{vars}(P)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$X \neq Y$</td>
</tr>
<tr>
<td>Mutate</td>
<td>$P \land f(s_1, t_1) = f(s_2, t_2)$</td>
<td>$P \land s_1 = t_2 \land t_1 = s_2$</td>
<td>f is commutative</td>
</tr>
</tbody>
</table>

Decompose and Mutate rules overlap.
Most General Unifiers

For ordinary unification, the mgu is unique, but what happens when new rules are built-into the unification algorithm?

Multiple mgus: Commutative unification

\[X + Y = a + b \rightarrow \begin{cases} X = a & Y = b \\ X = b & Y = a \end{cases} \quad \text{Both are equally general.} \]

Infinitely many mgus: Associative unification \(X + (Y + Z) = (X + Y) + Z \).

\[X + a = a + X \rightarrow \begin{cases} X = a \\ X = a + a \\ X = a + a + a \vdots \end{cases} \quad \text{All independent (not unifiable).} \]

No mgus: Build in \(f(0, X) = X \) and \(g(f(X, Y)) = g(Y) \):

\[g(X) = g(a) \rightarrow \begin{cases} X = a \\ X = f(Y_1, a) \\ X = f(Y_1, f(Y_2, a)) \end{cases} \quad \text{Many unifiers but no mgu.} \]
Types of Unification

Unitary A single unique mgu, or none (predicate logic).

Finitary Finite number of mgus (predicate logic with commutativity).

Infinitary Possibly infinite number of mgus (predicate logic with associativity).

Nullary No mgus exist, although unifiers may exist.

Undecidable Unification not decidable — no algorithm.
Types of Unification

<table>
<thead>
<tr>
<th>Axioms</th>
<th>Type</th>
<th>Decidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>nil</td>
<td>unitary</td>
<td>yes</td>
</tr>
<tr>
<td>commutative</td>
<td>finitary</td>
<td>yes</td>
</tr>
<tr>
<td>associative</td>
<td>infinitary</td>
<td>yes</td>
</tr>
<tr>
<td>assoc. + dist.</td>
<td>infinitary</td>
<td>yes</td>
</tr>
<tr>
<td>lambda calculus</td>
<td>infinitary</td>
<td>no</td>
</tr>
<tr>
<td>λ-calculus pattern fragment</td>
<td>unitary</td>
<td>yes</td>
</tr>
</tbody>
</table>
Summary

- Unification (Bundy Ch. 17.1 - 17.4)
 - Algorithms for matching and unification.
 - Unification as equation solving.
 - Transformation rules for equation solving.
 - Building-in axioms. (E-Unification/Semantic Unification)
 - Most general unifiers and classification.

- Next time: Proof by rewriting