Automated Reasoning

Lecture 11: Unification

Jacques Fleuriot
jf@inf.ed.ac.uk
Recap

- This lecture:
 - Solving equations by Unification
 - Matching and Unification algorithms
 - Building-in axioms: E-Unification
Motivation

Unification: finding a common instance of two terms

Informally: we want to make two terms identical by finding the most general substitution of terms for variables.

Why?

▶ Applying rules in Isabelle: working out what \(?P, ?Q, ?x\) are
▶ Heavily used in automated first-order theorem proving to postpone decisions during proof search: PROLOG, tableau provers, resolution provers
▶ Also used in most type inference algorithms (Haskell, OCaml, SML, Scala, ...)
A First Look at Unification

Unification: finding a common instance of two terms

Informally: we want to make two terms identical by finding the most general substitution of terms for variables.

Example

Can we make these pairs of terms equal by finding a common instance (assuming X, Y are variables and a, b are constants)?

<table>
<thead>
<tr>
<th>$f(X, b)$ and $f(a, Y)$</th>
<th>Yes: $[a/X, b/Y]$</th>
<th>instance: $f(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, X)$ and $f(a, b)$</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>$f(X, X)$ and $f(Y, g(Y))$</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Only (meta-)variables ($X, Y, Z, ...$) can be replaced by other terms.
Matching

Problem

Given pattern and target find a substitution such that:

\[\text{pattern[substitution]} \equiv \text{target} \]

where \(\equiv \) means that the terms are identical.

Example

\[(s(X) + Y)[0/X, s(0)/Y] \equiv (s(0) + s(0)) \]

How do we find an adequate substitution?

We view matching as equation solving.
Discover a substitution by decomposing the equation to be solved along the term trees:

\[
(s(X) + Y) \equiv (s(0) + s(0))
\]

\[
\downarrow
\]

\[
(s(X) \equiv s(0)) \land (Y \equiv s(0))
\]

\[
\downarrow
\]

\[
(X \equiv 0) \land (Y \equiv s(0))
\]
Some Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overrightarrow{t}</td>
<td>t_1, \ldots, t_n ($t \geq 1$)</td>
</tr>
<tr>
<td>$\bigwedge_i t_i$</td>
<td>$t_1 \land \ldots \land t_n$</td>
</tr>
<tr>
<td>$\text{vars}(t)$</td>
<td>the set of free variables in t</td>
</tr>
<tr>
<td>Vars</td>
<td>the set of (all) free variables</td>
</tr>
</tbody>
</table>

$$\text{vars}(f(X, Y, g(a, Z, X))) = \{X, Y, Z\}$$

$$\text{vars}(f(a, b, c)) = \{\}$$
Matching as Equation Solving

Start with the pattern and target standardised apart:

$$\text{vars}(\text{pattern}) \cap \text{vars}(\text{target}) = \{\}$$

Goal is to solve for $\text{vars}(\text{pattern})$ in equation $\text{pattern} \equiv \text{target}$.

Strategy is to use transformation rules:

$$\begin{align*}
\text{pattern} & \equiv \text{target} \\
\downarrow \\
\vdots \\
\downarrow \\
X_1 = t_1 & \land \ldots \land X_n = t_n
\end{align*}$$

Resulting substitution is $[t_1/X_1, \ldots, t_n/X_n]$.

Transformations end in failure if no match is possible.
Transformation Rules for Matching (Examples)

Decompose

\[s(X) + Y \equiv s(0) + s(0) \]

\[\downarrow \]

\[s(X) \equiv s(0) \land Y \equiv s(0) \]

Conflict

\[s(X) + y \equiv s(0) \]

\[\downarrow \]

Cannot match: \(s \not\equiv + \)

Eliminate

\[(X + Y \equiv s(0) + 0) \land (Y \equiv 0) \]

\[\downarrow \]

\[(X + 0 \equiv s(0) + 0) \land (Y \equiv 0) \]

Delete

\[X \equiv 0 \land (s(0) + 0 \equiv s(0) + 0) \]

\[\downarrow \]

\[X \equiv 0 \]
Transformation Rules for Matching

Assumptions: s and t are arbitrary terms and are standardised apart.

<table>
<thead>
<tr>
<th>Name</th>
<th>Before</th>
<th>After</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decompose</td>
<td>$P \land f(\overrightarrow{s}) \equiv f(\overrightarrow{t})$</td>
<td>$P \land \land_{i} s_i \equiv t_i$</td>
<td></td>
</tr>
<tr>
<td>Conflict</td>
<td>$P \land f(\overrightarrow{s}) \equiv g(\overrightarrow{t})$</td>
<td>fail</td>
<td>$f \neq g$</td>
</tr>
<tr>
<td>Eliminate</td>
<td>$P \land X \equiv t$</td>
<td>$P[t/X] \land X \equiv t$</td>
<td>$X \in \text{vars}(P)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$P \land t \equiv t$</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm terminates when no further rules apply and fail has not occurred.

The algorithm terminates with a match iff there is one.

The algorithm may terminate without a match: e.g., $X = a \land b = Y$
Unification

Unification is two-way matching (there is no distinction between pattern and target).

\[\text{term}_1[\text{substitution}] \equiv \text{term}_2[\text{substitution}] \]

Example

What substitution makes \((s(X) + s(0))\) and \((s(0) + Y)\) identical?

\[\theta = [0/X, s(0)/Y] \]

We need to add extra rules to the matching algorithm:

\[
\begin{align*}
(s(X) + s(0)) & \equiv (s(0) + Y) \\
\downarrow & \\
\text{Decompose} \\
\end{align*}
\]

\[
\begin{align*}
s(X) & \equiv s(0) \land s(0) \equiv Y \\
\downarrow & \\
\text{Decompose} \\
\end{align*}
\]

\[
\begin{align*}
X & \equiv 0 \land s(0) \equiv Y \\
\downarrow & \\
\text{Switch} \\
\end{align*}
\]

\[
\begin{align*}
X & \equiv 0 \land Y \equiv s(0)
\end{align*}
\]
New Transformation Rules

Switch

\[
\begin{align*}
t & \equiv X \\
\downarrow \\
X & \equiv t
\end{align*}
\]

Switch rule applies only if \(lhs \) is not originally a variable

Coalesce

\[
\begin{align*}
X & \equiv Y + 1 \land Y \equiv X \\
\downarrow \\
X & \equiv X + 1 \land Y \equiv X
\end{align*}
\]

Similar to Eliminate, except both \(lhs \) and \(rhs \) are variables

Occurs Check

\[
\begin{align*}
X & \equiv X + 1 \\
\downarrow \\
\text{fail}
\end{align*}
\]

\(lhs \) cannot occur in \(rhs \)

Example

\[
\begin{align*}
f(X, X) & \equiv f(Y, Y + 1) \\
\downarrow \quad \text{Decompose} \\
X & \equiv Y \land X \equiv Y + 1 \\
\downarrow \quad \text{Coalesce} \\
X & \equiv Y \land Y \equiv Y + 1 \\
\downarrow \quad \text{Occurs check} \\
\text{fail}
\end{align*}
\]

\[
\begin{align*}
p(X) & \land X \equiv X + 1 \\
\downarrow \quad \text{Eliminate} \\
p(X + 1) & \land X \equiv X + 1 \\
\downarrow \quad \text{Eliminate} \\
p((X + 1) + 1) & \land X \equiv X + 1 \\
\downarrow \quad \text{Eliminate} \\
\ldots
\end{align*}
\]

Non-termination can result without the occurs check.
Unification Algorithm

Assumptions: s and t are arbitrary terms and $\text{Vars} = \text{vars}(s) \cup \text{vars}(t)$.

<table>
<thead>
<tr>
<th>Name</th>
<th>Before</th>
<th>After</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decompose</td>
<td>$P \land f(\overrightarrow{s}) \equiv f(\overrightarrow{t})$</td>
<td>$P \land \bigwedge_i s_i \equiv t_i$</td>
<td>$f \neq g$</td>
</tr>
<tr>
<td>Conflict</td>
<td>$P \land f(\overrightarrow{s}) \equiv g(\overrightarrow{t})$</td>
<td>fail</td>
<td></td>
</tr>
<tr>
<td>Switch</td>
<td>$P \land s \equiv X$</td>
<td>$P \land X \equiv s$</td>
<td>$X \in \text{Vars}$ $s \not\in \text{Vars}$</td>
</tr>
<tr>
<td>Delete</td>
<td>$P \land s \equiv s$</td>
<td>P</td>
<td>$s \not\in \text{Vars}$</td>
</tr>
<tr>
<td>Eliminate</td>
<td>$P \land X \equiv s$</td>
<td>$P[s/X] \land X \equiv s$</td>
<td>$X \in \text{vars}(P)$ $X \not\in \text{vars}(s)$ $s \not\in \text{Vars}$</td>
</tr>
<tr>
<td>Occurs Check</td>
<td>$P \land X \equiv s$</td>
<td>fail</td>
<td>$X \in \text{vars}(s)$ $s \not\in \text{Vars}$</td>
</tr>
<tr>
<td>Coalesce</td>
<td>$P \land X \equiv Y$</td>
<td>$P[Y/X] \land X \equiv Y$</td>
<td>$X, Y \in \text{vars}(P)$ $X \neq Y$</td>
</tr>
</tbody>
</table>

- Conditions ensure that at most one rule applies to each conjunct.
- Algorithm terminates with success when no further rules apply.
Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition $\phi \circ \theta$ is also a substitution which, for any term t, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$
Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their \emph{composition} $\phi \circ \theta$ is also a substitution which, for any term t, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

Examples:

$$[a/x] \circ [b/y] = [a/x, b/y]$$
Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition $\phi \circ \theta$ is also a substitution which, for any term t, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

Examples:

$$[a/x] \circ [b/y] = [a/x, b/y]$$
$$[g(y)/x] \circ [b/y] = [g(b)/x, b/y]$$
Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition $\phi \circ \theta$ is also a substitution which, for any term t, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

Examples:

$$[a/x] \circ [b/y] = [a/x, b/y]$$
$$[g(y)/x] \circ [b/y] = [g(b)/x, b/y]$$
$$[a/x] \circ [b/x] = [a/x]$$
Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition $\phi \circ \theta$ is also a substitution which, for any term t, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

Examples:

$$[a/x] \circ [b/y] = [a/x, b/y]$$
$$[g(y)/x] \circ [b/y] = [g(b)/x, b/y]$$
$$[a/x] \circ [b/x] = [a/x]$$

- Equality of substitutions: $\phi = \theta$ if $x[\phi] = x[\theta]$ for any variable x.
- Properties: $(\phi \circ \theta) \circ \sigma = \phi \circ (\theta \circ \sigma)$, $\phi \circ [] = \phi$ and $[] \circ \phi = \phi$.
- Composition is needed to define the notion of a most general unifier.
Properties of the Unification Algorithm

- The algorithm will find a unifier, if it exists.
- It returns the **most general unifier** (mgu) θ.

Definition
Given any two terms s and t, θ is their mgu if:

\[
\theta \models t[\theta] \land \forall \phi. \ s[\phi] \equiv t[\phi] \rightarrow \exists \psi. \ \phi = \theta \circ \psi.
\]

Consider $g(g(X))$ and $g(Y)$. Is $[g(3)/Y, 3/X]$ a unifier? Is it the mgu?
- mgu is **unique** up to alphabetic variance;
- the algorithm can easily be extended to simultaneous unification on n expressions.
Building-in Axioms

General Scheme:

\[(Ax_1 \cup Ax_2) + \text{unif} \implies Ax_1 + \text{unif}_{Ax_2}.\]

Some axioms of the theory become built into unification.

Example

Commutative-Unification

\[X + 2 = Y + 3\]

\[\Downarrow\]

We no longer use \(\equiv\) but =

\[Y = 2 \land X = 3\]

How do we deal with this?

We can add a new transformation rule (Mutate rule).
Unification Algorithm for Commutativity

<table>
<thead>
<tr>
<th>Name</th>
<th>Before</th>
<th>After</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decompose</td>
<td>$P \land f(\overrightarrow{s}) = f(\overrightarrow{t})$</td>
<td>$P \land \bigwedge_i s_i = t_i$</td>
<td></td>
</tr>
<tr>
<td>Conflict</td>
<td>$P \land f(\overrightarrow{s}) = g(\overrightarrow{t})$</td>
<td>fail</td>
<td>$f \neq g$</td>
</tr>
<tr>
<td>Switch</td>
<td>$P \land s = X$</td>
<td>$P \land X = s$</td>
<td>$X \in \text{Vars}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$s \not\in \text{Vars}$</td>
</tr>
<tr>
<td>Delete</td>
<td>$P \land s = s$</td>
<td>P</td>
<td>$X \in \text{vars}(P)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$X \not\in \text{vars}(s)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$s \not\in \text{Vars}$</td>
</tr>
<tr>
<td>Eliminate</td>
<td>$P \land X = s$</td>
<td>$P[s/X] \land X = s$</td>
<td>$X \in \text{vars}(P)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$X \not\in \text{vars}(s)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$s \not\in \text{Vars}$</td>
</tr>
<tr>
<td>Check</td>
<td>$P \land X = s$</td>
<td>fail</td>
<td>$X \in \text{vars}(s)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$s \not\in \text{Vars}$</td>
</tr>
<tr>
<td>Coalesce</td>
<td>$P \land X = Y$</td>
<td>$P[Y/X] \land X = Y$</td>
<td>$X, Y \in \text{vars}(P)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$X \neq Y$</td>
</tr>
<tr>
<td>Mutate</td>
<td>$P \land f(s_1, t_1) = f(s_2, t_2)$</td>
<td>$P \land s_1 = t_2 \land t_1 = s_2$</td>
<td>f is commutative</td>
</tr>
</tbody>
</table>

Decompose and Mutate rules overlap.
Most General Unifiers

For ordinary unification, the mgu is unique, but what happens when new rules are built-into the unification algorithm?

Multiple mgus: Commutative unification

\[X + Y = a + b \rightarrow \begin{cases}
 X = a \land Y = b \\
 X = b \land Y = a
\end{cases} \quad \text{Both are equally general.} \]

Infinitely many mgus: Associative unification \(X + (Y + Z) = (X + Y) + Z \).

\[X + a = a + X \rightarrow \begin{cases}
 X = a \\
 X = a + a \\
 X = a + a + a \\
 \ldots
\end{cases} \quad \text{All independent (not unifiable).} \]

No mgus: Build in \(f(0, X) = X \) and \(g(f(X, Y)) = g(Y) \): \(g(X) = g(a) \rightarrow \begin{cases}
 X = a \\
 X = f(Y_1, a) \\
 X = f(Y_1, f(Y_2, a))
\end{cases} \quad \text{Many unifiers but no mgu.} \)
Types of Unification

- **Unitary** A single unique mgu, or none (predicate logic).
- **Finitary** Finite number of mgus (predicate logic with commutativity).
- **Infinitary** Possibly infinite number of mgus (predicate logic with associativity).
- **Nullary** No mgus exist, although unifiers may exist.
- **Undecidable** Unification not decidable — no algorithm.
Types of Unification

<table>
<thead>
<tr>
<th>Axioms</th>
<th>Type</th>
<th>Decidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>nil</td>
<td>unitary</td>
<td>yes</td>
</tr>
<tr>
<td>commutative</td>
<td>finitary</td>
<td>yes</td>
</tr>
<tr>
<td>associative</td>
<td>infinitary</td>
<td>yes</td>
</tr>
<tr>
<td>assoc. + dist.</td>
<td>infinitary</td>
<td>yes</td>
</tr>
<tr>
<td>lambda calculus</td>
<td>infinitary</td>
<td>no</td>
</tr>
<tr>
<td>(\lambda)-calculus pattern fragment</td>
<td>unitary</td>
<td>yes</td>
</tr>
</tbody>
</table>
Summary

- Unification (Bundy Ch. 17.1 - 17.4)
 - Algorithms for matching and unification.
 - Unification as equation solving.
 - Transformation rules for equation solving.
 - Building-in axioms (E-Unification/Semantic Unification)
 - Most general unifiers and classification.

- Next time: Proof by rewriting