Recap

- Last time: First-Order Logic
- This time:
 - Representing mathematical concepts
 - Introduction to Higher-Order Logic
Representing Knowledge

So far, we have:

▶ Seen the primitive rules of (first-order) logic
▶ Reasoned about abstract Ps, Qs, and Rs

But we usually want to reason in some mathematical theory. For example: number theory, real analysis, automata theory, euclidean geometry, ...

How do we represent this theory so we can prove theorems about it?

▶ Which logic do we use? — Propositional, FOL, Temporal, Hoare Logic, HOL?
▶ Do we axiomatise our theory, or define it in terms of more primitive concepts?
▶ What style do we use? e.g. functions vs. relations
Further Issues

What are the important theorems in our theory?

- Which formalisation is most useful?
- Is it easy to understand?
- Is it natural?
- How easy is it to reason with?

Often a matter of taste, or experience, or tradition, or efficiency of implementation, or following the idioms of the people you are working with. No one right way!

Granularity of the representation

- What primitives do we need? Consider geometry:
 - Define lines in terms of points? (Tarski)
 - Or take points and lines as primitive? (Hilbert)

- Or computing; should we treat programs as:
 - State transition systems? (operational)
 - Functions mapping inputs to outputs? (∼ denotational)
Axioms vs. Definitions

Let’s say we want to reason using the natural numbers \{0, 1, 2, 3, \ldots\}

Axiomatise? Assume a collection of function symbols and unproven axioms. For instance, the Peano axioms:

\[
\begin{align*}
\forall x. \neg(0 = S(x)) \\
\forall x. x + 0 &= x \\
\forall x. x + S(y) &= S(x + y)
\end{align*}
\]

…”

Define? If our logic has sets as a primitive (or are definable), then we can define the natural numbers via the von Neumann ordinals:

0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}, \ldots

Then we can prove the Peano axioms for this definition.
Axioms vs. Definitions

Axiomatisation:

▶ (+) Sometimes less work – finding a good definition, and (formally) working with it can be hard.
▶ (-) How do we know that our axiomatisation is adequate for our purposes, or is complete?
▶ (-) How do we know that our axiomatisation is consistent? Can we prove \bot from our axioms (and hence everything)?

Definition:

▶ (-) Can be a lot of work, sometimes needing some ingenuity.
▶ (+++) If the underlying logic is consistent, then we are guaranteed to be consistent (c.f., “Why should you believe Isabelle” from Lecture 4). We have relative consistency.
Axiomatisation, an example: Set Theory

Let’s take the FOL + a binary atomic predicate \in + the following axiom for every formula P with one free variable x:

$$\exists y. \forall x. x \in y \leftrightarrow P(x)$$

“For every predicate P there is a set y such that its members are exactly those that satisfy P”

We can now define empty set, pairing, union, intersection...
Axiomatisation, an example: Set Theory

Let’s take the FOL + a binary atomic predicate \in + the following axiom for every formula P with one free variable x:

$$\exists y. \forall x. x \in y \leftrightarrow P(x)$$

“For every predicate P there is a set y such that its members are exactly those that satisfy P”

We can now define empty set, pairing, union, intersection...

But it is too powerful! Let $P(x) \equiv \neg(x \in x)$. Then by the axiom there is a y such that:

$$y \in y \leftrightarrow y \notin y$$

This is Russell’s paradox.
Axiomatisation, an example: Set Theory

Let’s take the FOL + a binary atomic predicate ∈ + the following axiom for every formula P with one free variable x:

$$\exists y. \forall x. x \in y \leftrightarrow P(x)$$

“For every predicate P there is a set y such that its members are exactly those that satisfy P”

We can now define empty set, pairing, union, intersection...

But it is too powerful! Let $P(x) \equiv \neg(x \in x)$. Then by the axiom there is a y such that:

$$y \in y \leftrightarrow y \notin y$$

This is Russell’s paradox.

Background: the axiom is called “unrestricted comprehension”, it was replaced by:

$$\forall z. \exists y. \forall x. (x \in y \leftrightarrow (x \in z \land P(x)))$$

+ some other axioms to give ZF set theory.
Building up Definitions: Integers

Starting from the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$, we can define:

► each integer $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ as an **equivalence class** of pairs of natural numbers under the relation $
(a, b) \sim (c, d) \iff a + d = b + c$;

► For example, -2 is represented by the equivalence class $[(0, 2)] = [(1, 3)] = [(100, 102)] = \ldots$.

► we define the sum and product of two integers as

\[
[(a, b)] + [(c, d)] = [(a + c, b + d)] \\
[(a, b)] \times [(c, d)] = [(ac + bd, ad + bc)]
\]

► we define the set of **negative** integers as the set

\[
\{[(a, b)] \mid b > a\}.
\]

► Exercise: show that the product of negative integers is non-negative.
Other Representation Examples

- The rationals \mathbb{Q} can be defined as pairs of integers. Reasoning about the rationals therefore reduces to reasoning about the integers.
- The reals \mathbb{R} can be defined as sets of rationals. Reasoning about the reals therefore reduces to reasoning about the rationals.
- The complex numbers \mathbb{C} can be defined as pairs of reals. Reasoning about the complex numbers therefore reduces to reasoning about the reals.
- In this way, we have relative consistency.
 - If the theory of natural numbers is consistent, so is the theory of complex numbers.
Functions or Predicates?

We can represent some property r holding between two objects x and y as:

- a function with equality $r(x) = y$
- a predicate $r(x, y)$

Is it better to use functions or predicates to represent properties?

It is not always clear which is best!
For example, suppose we represent division of real numbers (/) by a function $\text{div} : \text{real} \times \text{real} \Rightarrow \text{real}$.

- We define $\text{div}(x, y)$ when $y \neq 0$ in normal way
- What about division-by-zero? What is the value of $\text{div}(x, 0)$?
- In first-order logic, functions are assumed to be total, so we have to pick a value!
- We could choose a convenient element: say 0. That way:

$$0 \leq x \rightarrow 0 \leq 1/x.$$
Q) Can we represent division of real numbers (/) by a relation $\text{Div}: \text{real} \times \text{real} \times \text{real} \Rightarrow \text{bool}$ such that $\text{Div}(x, y, z)$ is

- $x/y = z$ when $y \neq 0$, and
- \perp when $y = 0$?

A) Yes: $\text{Div}(x, y, z) \equiv x = y \times z \land \forall w. x = y \times w \rightarrow z = w$

That is, z is that unique value such that $x = y \times z$.

But now formulas are more complicated.

$$x, y \neq 0 \rightarrow \frac{1}{(x/y)/x} = y$$

becomes

$$\text{Div}(x, y, u) \land \text{Div}(u, x, v) \land \text{Div}(1, v, w) \land x, y \neq 0 \rightarrow w = y$$
Can we represent the concept of square roots with a function $\sqrt{} : \text{real} \Rightarrow \text{real}$?

- All positive real numbers have two square roots, and yet a function maps points to single values.

- We can pick one of the values arbitrarily: say, the positive (principal) square root.

- Or we can have the function map every real to a set $\sqrt{} : \text{real} \Rightarrow \text{real set}$:

 $$\sqrt{x} \equiv \{ y \mid x = y^2 \}. $$

- But now we have two kinds of object: reals and sets of reals, and we cannot conveniently express:

 $$(\sqrt{x})^2 = x$$

- Our representation of reals is no longer self-contained.
Q) Can we represent the concept of square roots with a relation $Sqrt : real \times real \Rightarrow bool$?

A) Yes. E.g. $Sqrt(x, y) \equiv x = y^2$.

Again drawback of formulas being more complicated
Functions, Predicates and Sets

We can translate back and forth. But too much translation makes a formalisation hard to use!

Any function $f: \alpha \rightarrow \beta$ can be represented as a relation $R: \alpha \times \beta \rightarrow bool$ or a set $S: (\alpha \times \beta) set$ by defining:

$$R(x, y) \equiv f(x) = y$$
$$S \equiv \{(x, y) \mid f(x) = y\}.$$

Any predicate P can be represented by a function f or a set S by defining:

$$f(x) \equiv \begin{cases} True & : P(x) \\ False & : \text{otherwise} \end{cases}$$
$$S \equiv \{x \mid P(x)\}.$$

Any set S can be represented by a function f or a predicate P by defining:

$$f(x) \equiv \begin{cases} True & : x \in S \\ False & : \text{otherwise} \end{cases}$$
$$P(x) \equiv x \in S$$
In pure (without axioms) FOL, we cannot directly represent the statement:

there is a function that is larger on all arguments than the log function.

To formalise it, we would need to quantify over functions:

\[\exists f. \forall x. f(x) > \log x. \]

Likewise we cannot quantify over predicates.

Solutions in FOL:

- Represent all functions and predicates by *sets*, and quantify over these. This is the approach of first-order set theories such as *ZF*.

- Introduce sorts for predicates and functions. Not so elegant now having 2 kinds of each.
Higher-Order Logic (HOL)

Alternatively...
In HOL, we represent sets and predicates by functions, often denoted by lambda abstractions.

Definition (Lambda Abstraction)
Lambda abstractions are terms which denote functions directly by the rules which define them, e.g. the square function is $\lambda x. x \cdot x$.

This is a way of defining a function without giving it a name:

\[
f(x) \equiv x \cdot x \quad \text{vs} \quad f \equiv \lambda x. x \cdot x
\]

We can use lambda abstractions exactly as we use ordinary function symbols. E.g. $(\lambda x. x \cdot x) \ 3 = 9$.

Using λ-notation, we can think about functions as individual objects. E.g., we can define functions which map from and to other functions.

Example
The K-combinator maps some x to a function which sends any y to x.

$$\lambda x. \lambda y. x.$$

Example
The composition function maps two functions to their composition:

$$\lambda f. \lambda g. \lambda x. f(g \, x).$$
Types \textit{bool}, \textit{ind} (individuals) and $\alpha \Rightarrow \beta$ primitive. All others defined from these.

Two primitive (families of) functions:

\begin{align*}
\text{equality} & : \alpha \Rightarrow \alpha \Rightarrow \text{bool} \\
\text{implication} & : \text{bool} \Rightarrow \text{bool} \Rightarrow \text{bool}
\end{align*}

All other functions defined using this, lambda abstraction and application.

Distinction between formulas and terms is dispensed with: formulas are just terms of type \textit{bool}.

Predicates are represented by functions $\alpha \Rightarrow \text{bool}$. Sets are represented as predicates.
True is defined as:
\[\top \equiv (\lambda x. x) = (\lambda x. x) \]

Universal quantification as function equality:
\[\forall x. \phi \equiv (\lambda x. \phi) = (\lambda x. \top) \]

This works for \(x \) of any type: \(\text{bool}, \text{ind} \Rightarrow \text{bool}, \ldots \)

Therefore, we can quantify over functions, predicates and sets.

Conjunction and disjunction are defined:
\[
\begin{align*}
P \land Q & \equiv \forall R. (P \rightarrow Q \rightarrow R) \rightarrow R \\
P \lor Q & \equiv \forall R. (P \rightarrow R) \rightarrow (Q \rightarrow R) \rightarrow R
\end{align*}
\]

Define natural numbers (\(\mathbb{N} \)), integers (\(\mathbb{Z} \)), rationals (\(\mathbb{Q} \)), reals (\(\mathbb{R} \)), complex numbers (\(\mathbb{C} \)), vector spaces, manifolds, …
Higher-Order Logic is the underlying logic of Isabelle/HOL, the theorem prover we are using.

(below is for interest only!)

The axiomatisation is slightly different to the one described on the previous slides, and a bit more powerful.

If you are really keen, look at the chapter “Higher-Order Logic” in the “logics” document in the Isabelle documentation.

Or the file Isabelle2013-2/src/HOL/HOL.thy in the Isabelle installation.

Exercise (only if you are interested!): why can’t Russell’s paradox happen in HOL?
Summary

- This time:
 - Issues involved in representing mathematical theories
 - Axioms vs. Definitions
 - Functions vs. Predicates
 - Introduction to Higher-Order Logic
 - Reading: Bundy, Chapter 4 (contains further discussion of issues in representation, e.g. variadic functions).

- On the course web-page: some more exercises, asking you to prove False from the axioms of Naive Set Theory.

- Next time:
 - Coursework 1: Proving in Isabelle/HOL.