Automated Reasoning

Lecture 1: Introduction

Jacques Fleuriot
jdf@inf.ed.ac.uk
What is it to Reason?

- Reasoning is a process of deriving new statements (conclusions) from other statements (premises) by argument.
- For reasoning to be correct, this process should generally preserve truth. That is, the arguments should be valid.
- How can we be sure our arguments are valid?
- Reasoning takes place in many different ways in everyday life:
 - **Word of Authority**: derive conclusions from a trusted source.
 - **Experimental science**: formulate hypotheses and try to confirm or falsify them by experiment.
 - **Sampling**: analyse evidence statistically to identify patterns.
 - **Mathematics**: we derive conclusions based on deductive proof.
- Are any of the above methods valid?
What is a Proof? (I)

- For centuries, mathematical proof has been the hallmark of logical validity.
- But there is still a **social aspect** as peers have to be convinced by argument.

> *A proof is a repeatable experiment in persuasion*
> — Jim Horning¹

- This process is open to **flaws**: e.g., Kempe’s acclaimed 1879 “proof” of the Four Colour Theorem, etc.

¹https://en.wikipedia.org/wiki/Jim_Horning
What is a Formal Proof?

▶ We can be sure there are no hidden premises, or unjustified steps, by reasoning according to logical form alone.

Example
Suppose all humans are mortal. Suppose Socrates is human. Therefore, Socrates is mortal.
▶ The validity of this proof is independent of the meaning of “human”, “mortal” and “Socrates”.
▶ Even a nonsense substitution gives a valid sentence:

Example
Suppose all borogroves are mimsy. Suppose a mome rath is a borogrove. Therefore, a mome rath is mimsy.²

Example
Suppose all Ps are Q. Suppose x is a P. Therefore, x is a Q.

²https://en.wikipedia.org/wiki/Mimsy_Were_the_Borogoves
The modern notion of **symbolic proof** was developed in the late-19th and 20th century by logicians and mathematicians such as Bertrand Russell, Gottlob Frege, David Hilbert, Kurt Gödel, Alfred Tarski, Julia Robinson, ...

The benefit of formal logic is that it is based on a **pure syntax**: a precisely defined symbolic language with procedures for transforming symbolic statements into other statements, based solely on their form.

No intuition or interpretation is needed, merely applications of agreed upon rules to a set of agreed upon formulae.
But!

- Formal proofs are bloated!

I find nothing in [formal logic] but shackles. It does not help us at all in the direction of conciseness, far from it; and if it requires 27 equations to establish that 1 is a number, how many will it require to demonstrate a real theorem?

— Poincaré

- Can automation help?
Automated Reasoning

- **Automated Reasoning** (AR) refers to reasoning in a computer using logic.
- AR has been an active area of research since the 1950s.
- Traditionally viewed as part of Artificial Intelligence (AI ≠ Machine Learning!).
- It uses deductive reasoning to tackle problems such as
 - constructing formal mathematical proofs;
 - verifying that programs meet their specifications;
 - modelling human reasoning.
Mathematical Reasoning

Mechanical mathematical theorem proving is an exciting field. Why?

- Intelligent, often non-trivial activity.
- Circumscribed domain with bounds that help control reasoning.
- Mathematics is based around logical proof and — in principle — reducible to formal logic.
- Numerous applications
 - the need for formal mathematical reasoning is increasing: need for well-developed theories;
 - e.g. hardware and software verification;
 - e.g. research mathematics, where formal proofs are starting to be accepted.
Understanding mathematical reasoning

- Two main aspects have been of interest
 - **Logical**: how should we reason; what are the valid modes of reasoning?
 - **Psychological**: how do we reason?

- Both aspects contribute to our understanding

- (Mathematical) Logic:
 - shows how to represent mathematical knowledge and inference;
 - does not tell us how to guide the reasoning process.

- Psychological studies:
 - do not provide a detailed and precise recipe for how to reason, but can provide advice and hints or **heuristics**;
 - heuristics are especially valuable in automatic theorem proving — but finding good ones is a hard task.
Many systems: Isabelle, Coq, HOL Light, PVS, Vampire, E, ...

- provide a mechanism to formalise proof;
- user-defined concepts in an *object-logic*;
- user expresses formal conjectures about concepts.

Can these systems find proofs *automatically*?

- In some cases, yes!
- But sometimes it is too difficult.

Complicated verification tasks are usually done in an *interactive* setting.
Interactive Proof

- User guides the inference process to prove a conjecture (hopefully!)
- Systems provide:
 - tedious bookkeeping;
 - standard libraries (e.g., arithmetic, lists, real analysis);
 - guarantee of correct reasoning;
 - varying degrees of automation:
 - powerful simplification procedures;
 - may have decision procedures for decidable theories such as linear arithmetic, propositional logic, etc.;
 - call fully-automatic first-order theorem provers on (sub-)goals and incorporating their output e.g. Isabelle’s sledgehammer.
Interactive proof can be challenging, but also rewarding.

It combines aspects of **programming** and **mathematics**.

Large-scale interactive theorem proving is relatively new and unexplored:

- Many potential application areas are under-explored
- Not at all clear what The Right Thing To Do is in many situations
- New ideas are needed all the time
- This is what makes it exciting!

What we do know: **Representation** matters!
\sqrt{2} is irrational in Isabelle
Limitations (I)

Do you think formalised mathematics is:

1. **Complete**: can every statement be proved or disproved?
2. **Consistent**: no statement can be both true and false?
3. **Decidable**: there exists a terminating procedure to determine the truth or falsity of any statement?
Limitations (II)

- Gödel’s Incompleteness Theorems showed that, if a formal system can prove certain facts of basic arithmetic, then there are other statements that cannot be proven or refuted in that system.
- In fact, if such a system is consistent, it cannot prove that it is so.
- Moreover, Church and Turing showed that first-order logic is undecidable.
- Do not be disheartened!
- We can still prove many interesting results using logic.
What is a proof? (II)

- **Computerised proofs** are causing **controversy** in the mathematical community
 - proof steps may be in the hundreds of thousands;
 - they are impractical for mathematicians to check by hand;
 - it can be hard to guarantee proofs are not flawed;
 - e.g., Hales’s proof of the Kepler Conjecture.

- The acceptance of a computerised proof can rely on
 - formal specifications of concepts and conjectures;
 - **soundness** of the prover used;
 - size of the community using the prover;
 - **surveyability** of the proof;
 - (for specialists) the kind of logic used.
In this course we will be using the popular interactive theorem prover **Isabelle/HOL**:
- It is based on the simply typed λ-calculus with rank-1 (ML-style) polymorphism.
- It has an extensive **theory library**.
- It supports two styles of proof: procedural (‘apply’-style) and declarative (structured).
- It has a powerful simplifier, classical reasoner, decision procedures for decidable fragments of theories.
- It can call automatic first-order theorem provers.
- Widely accepted as a **sound** and **rigorous** system.
Soundness in Isabelle

- Isabelle follows the LCF approach to ensure soundness.
- We declare our conjecture as a goal, and then we can:
 - use a known theorem or axiom to prove the goal;
 - use a tactic to prove the goal;
 - use a tactic to transform the goal into new subgoals.
- Tactics construct the formal proof in the background.
- Axioms are generally discouraged; definitions are preferred.
- New concepts should be conservative extensions of old ones.
Course Contents (in brief)

▶ Logics: first-order, aspects of higher-order logic.
▶ Reasoning: unification, rewriting, natural deduction.
▶ Interactive theorem proving: introduction to theorem proving with Isabelle/HOL.
 ▶ Representation: definitions, locales etc.
 ▶ Proofs: procedural and structured (Isar) proofs.
▶ Formalised mathematics.
Module Outline

- 2 lectures per week 14:10–15:00:
 - Tuesday: 1.02, 21 Buccleuch Place, Central Campus
 - Thursday: G.02 - Classroom 2, High School Yards Teaching Centre, Central Campus

- 7 tutorials (starting Week 3)

- Lab sessions (drop-in):
 - Mondays 09:00–11:00 (starting Week 3, to be confirmed)
 - 4.12, Appleton Tower

- 1 assignment and 1 exam:
 - Examination: 60%
 - Coursework: 40% (so this is a non-trivial part of the course)

- Lecturer:
 - Jacques Fleuriot
 - Office: IF 2.15

- TA:
 - Imogen Morris
 - Email: s1402592@sms.ed.ac.uk
Useful Course Material

▶ AR web pages:

http://www.inf.ed.ac.uk/teaching/courses/ar.

▶ Lecture slides are on the course website.

▶ Recommended course textbooks:

▶ Other material — recent research papers, technical reports, etc. will be added to the AR webpage.

▶ Class discussion forum (open for registration):