
Automated Reasoning Lecture 8, page 1Rewrite Rules

Automated Reasoning

Rewrite Rules

Jacques Fleuriot

Automated Reasoning Lecture 8, page 2Rewrite Rules

Term Rewriting
● Rewriting is a technique for replacing terms in an

expression with equivalent terms

– useful for simplification, e.g.

● given “x✴0=0”, we can rewrite “x+(x✴0)” to “x+0”
● and if “x+0=x”, we can rewrite further to just “x”

– uses “one-way” unification i.e. matching

● We use the notation L ⇒ R to define a rewrite rule that
replaces the term L with the term R in an expression
(and not vice versa).

Automated Reasoning Lecture 8, page 3Rewrite Rules

The Power of Rewrites

0 + n ⇒ n (1)
(0 ≤ m) ⇒ True (2)
s(m) + n ⇒ s(m + n) (3)
s(m) ≤ s(n) ⇒ m ≤ n (4)

Given this set
of rewrite rules:

This statement is
easily proved:

0 + s(0) ≤ s(0) + x

by (1), s(0) ≤ s(0) + x
by (3), s(0) ≤ s(0 + x)
by (4), 0 ≤ 0 + x
by (2), True

Automated Reasoning Lecture 8, page 4Rewrite Rules

Peano Arithmetic
The rewrites in our previous slide are part of a common
foundation for the natural numbers, called Peano Arithmetic.
s is the successor function, so 1 is defined as s(0).

For addition and multiplication,
we often have these rewrites:

Example:
s(s(0))✴s(0) = s(0)✴s(0)+s(0) by (4), [s(0)/x,s(0)/y]

= 0✴s(0)+s(0)+s(0) by (4), [0/x,s(0)/y]
= ⋮
= s(s(0))

0x ⇒ x
s x y ⇒ s xy
0∗x ⇒ 0
s x ∗y ⇒ x∗yy

In this example, the final expression is ground (contains only
constants). Rewriting is useful even if this is not the case.
This is called symbolic evaluation: s 0s a ⇒ ⇒ s s a

(1)
(2)
(3)
(4)

Exercise: fill in the missing steps

Automated Reasoning Lecture 8, page 5Rewrite Rules

Rewrite Rule of Inference

We use the notation P{t} to mean
that the expression P contains a
subexpression t.

Note: rewrite rule of inference uses
matching not unification

Example:

Given an expression (s(A)+s(0))+s(B)
and a rewrite rule s(x)+y ⇒ s(x+y)
we can find t = s(A)+s(0)
and φ = [A/x, s(0)/y]

Rewriting gives us s(A+s(0))+s(B)

P{t} L⇒R Lφ≡t
P{Rφ}

Automated Reasoning Lecture 8, page 6Rewrite Rules

A rewrite rule α ⇒ β should satisfy the following restrictions:

● α is not a variable

– e.g. x ⇒ x+1 if the LHS can match anything,
it's very hard to control!

● vars(β) ⊆ vars(α)

– e.g. 0 ⇒ 0✴x if we start with a ground term,
we should always have a ground term

Some Restrictions

Automated Reasoning Lecture 8, page 7Rewrite Rules

Algebraic Simplification

Example: a 2∗0
∗5 b∗0

= a 0
∗5 b∗0 by (1)

= 1∗5 b∗0 by (3)
= 5 b∗0 by (2)
= 5 0 by (1)
= 5 by (4)

●Terminology: Any subexpression that can be rewritten (i.e.
matches the LHS of a rewrite rule) is called a redex.
(This is short for reducible expression.)

●There is sometimes a choice:
● which subexpression to rewrite
● which rule to use

1. x∗0 ⇒ 0
2. 1∗x ⇒ x
3. x0

⇒ 1
4. x0 ⇒ x

Automated Reasoning Lecture 8, page 8Rewrite Rules

e.g. apply to

e.g. apply to

Partial Rewrite Search Tree

a 2∗0
∗5b∗0

a 0
∗5b∗0 a 2∗0

∗50

a 2∗0
∗5a0

∗50a 0
∗50

1∗5b∗0

 Common strategies:
● innermost (inside-out) leftmost redex (1st redex in post-order traversal)

● outermost (outside-in) leftmost redex (1st redex in pre-order traversal)

Important Questions:
● Is the tree finite (does the rewriting process always end) ?
● Does it matter in which order rewrites are applied

(or are all the leaf nodes the same) ?

0∗s 0s0s 0∗00∗x ⇒ 0

0⋅s0s 0s0xsy ⇒ sxy

Automated Reasoning Lecture 8, page 9Rewrite Rules

Logical Interpretation
● A rewrite rule L ⇒ R on its own is just a “replace” instruction;

to be useful, it must have some logical meaning attached!

● Most commonly, a rewrite L ⇒ R is permitted only if L=R

– This is how Isabelle uses rewrites

– Rewrites can instead be based on implications and other
formulas (e.g. a = b mod n), but one must take great care
that rewriting corresponds to logically valid steps.

● But of course, not everything that can be a rewrite rule
should be a rewrite rule! Rewrite sets are picked carefully:

– Ideally they terminate (see next slide)

– And ideally they rewrite an expression to a simplified
canonical normal form (covered later in lecture)

Automated Reasoning Lecture 8, page 10Rewrite Rules

Termination
We say that a set of rewrites rules terminates iff:

starting with any expression, successively applying rewrite rules
eventually brings us to a state where no more rewrites apply

– All the rewrite rule sets encountered so far in this lecture terminate;
there is no way to loop or apply them without end

– The following rewrite rules may cause a set to be non-terminating

● a reflexive rewrite (such as 0 ⇒ 0)
● a self-commuting rewrite (such as x✴y ⇒ y✴x)
● a commutative pair (such as

x+(y+z) ⇒ (x+y)+z and (x+y)+z ⇒ x+(y+z))

● An expression to which no rewrites apply is called a normal form
with respect to our set of rewrites

Automated Reasoning Lecture 8, page 11Rewrite Rules

Proving Termination

1. x∗0 ⇒ 0
2. 1∗x ⇒ x
3. x0

⇒ 1
4. x0 ⇒ x

Termination can be shown by defining a natural number measure on
an expression such that each rewrite rule decreases the measure.

Example:

a 2∗0 ∗5 b∗0 measure = 5
= a 0

∗5 b∗0 measure = 4
= 1∗5 b∗0 measure = 3
= 5 b∗0 measure = 2
= 5 0 measure = 1
= 5 measure = 0

For this set of algebraic rewrites, define
the measure of an expression as as the
count of the number of binary operations
(plus, times, or exp) it contains.

Since any rule application will decrease
the measure of an expression, and since
the measure cannot go past zero, this set
of rewrites will always terminate.

For a2✴0✴5 + b✴0, one possible sequence
of rewrite rules is shown at left. It
terminates with normal form 5.

Automated Reasoning Lecture 8, page 12Rewrite Rules

Notation
● We use ⇒ to indicate an application of a rewrite rule as well

as the declaration of the rewrite rule; e.g. given a rule x+0⇒x,
we may denote the fact that 5+0 rewrites to 5 as 5+0⇒5

● When considering rewrite systems, it can be useful to speak
of multi-step rewrites: we use ⇒* to mean zero or more
rewrite steps; e.g.

if our set contains a ⇒ b and b ⇒ c, we can write a ⇒* c;
in the previous example, a2*0

✴5 + b✴0 ⇒* 5

● We will also use the notations:
a ⇔ b for a ⇒ b or b ⇒ a
a ⇔* b for there is some chain of zero or more
u

1
, u

2
, ..., u

n
 such that: a ⇔ u

1
⇔ u

2
⇔ ... ⇔ u

n
⇔ b

● In diagrams, we draw * , or * to represent ⇒* and ⇔*

Automated Reasoning Lecture 8, page 13Rewrite Rules

Canonical Normal Form
 Depending on our set of rewrite rules,

the order of application might
affect the result.

We might have s ⇒* t1, s ⇒* t2,
s ⇒* t3, s ⇒* t4, and s ⇒* t5,
with t1, t2, t3, t4, and t5 normal.

If all normal forms arising from an expression are identical,
we say we have a canonical normal form of the expression.

This is a very nice property! It means that the order doesn't
matter; in this example, it would mean all the tn are identical.
In general, this property means our rewrites are simplifying
the expression in a canonical (safe) way.

s

t1t1
t3

t5t2 t4

Automated Reasoning Lecture 8, page 14Rewrite Rules

Church-Rosser and Confluence
How do we know if our set gives canonical normal forms?

Two definitions are helpful:
● A set of rewrite rules is confluent if:

for all terms r, s1 and s2 such that r ⇒* s1 and
r ⇒* s2 (by different sequences of rewrite rules),
there exists a term t such that s1 ⇒* t and s2 ⇒* t

● A set of rewrite rules is Church-Rosser if for all terms s1 and s2 such
that s1 ⇔* s2, there exists a term t such that s1 ⇒* t and s2 ⇒* t

Theorem: Church-Rosser is equivalent to confluence

Theorem: for terminating rewrite sets, these properties mean
that any expression will rewrite to a canonical normal form

s1

t

s2

r

*

*

 *

 *

Automated Reasoning Lecture 8, page 15Rewrite Rules

Local Confluence
The properties of Church-Rosser and confluence can be
difficult to prove. A weaker definition is very useful:

A set of rewrite rules is locally confluent if:
for all terms r, s1 and s2 such that r ⇒ s1 and
r ⇒ s2 (by a different rewrite rule), there
exists a term t such that s1 ⇒* t and s2 ⇒* t

Theorem:

local confluence + termination = confluence

Furthermore: local confluence is decidable (due to Knuth & Bendix)

Both the theorem and the decision procedure use the idea of critical pairs.

s1

t

s2

r

*

 *

Automated Reasoning Lecture 8, page 16Rewrite Rules

 How can choices arise in rewriting?
● Multiple rewrite rules apply to a single redex: order might matter
● Rewrite rules apply to multiple redexes

– if they are separate, order does not matter

– but if one contains the other, the choice of order may matter

Examples:

(1) x0 ⇒ 1 00 rewrites to: 1, by (1) 〈1,0〉
(2) 0y ⇒ 0 and to: 0, by (2)

(1) w e ⇒ w (x e) z rewrites to:
(2) (x y) z ⇒ x (y z) x z, by (1) and x (e z), by (2) 〈x z, x (e z)〉

We are interested in the case where order matters; i.e. one subexpression is
totally contained within another subexpression.

Choices in Rewriting

these are
instances of
what we call
critical pairs

Automated Reasoning Lecture 8, page 17Rewrite Rules

●Given two rules L1 ⇒ R1 and L2 ⇒ R2, we are concerned with the case
when there exists a sub-term s of L1 such that sθ≡L2θ, with most
general unifier θ

Applying these rules in different orders gives rise to a critical pair

Critical Pairs

Critical pair: < R1θ , L1θ[R2θ / sθ] >

L1θ[R2θ / sθ]

L1θ

R1θ

L1θ ⇒ R1θ
s[θ] is a sub-term of L1θ
s[θ] ≡ L2θ and
L2[θ] ⇒ R2θ N.B. the two rules should

have no variables in common;
if they do, we must rename
them in order to find the mgu θ

 w e ⇒ w
 (x y) z ⇒ x (y z)

example:

θ = [w/x, e/y], any other?

Automated Reasoning Lecture 8, page 18Rewrite Rules

 We are interested in whether we can conflate all the possible
critical pairs i.e. given r ⇒ s1 and r ⇒ s2, for expressions r, s1,
and s2, can we find a t such that s1 ⇒* t and s2 ⇒* t ?

The following algorithm is used to test for local confluence:

Assumption: Set of rewrite rules R is known to be terminating

Find all critical pairs of all pairs of rules in R

For each critical pair <a, b>, check that it is joinable (or
conflatable)

find a normal form a' of a
find a normal form b' of b
check that a' ≡ b';

FAIL if they are different

Testing for Local Confluence

Automated Reasoning Lecture 8, page 19Rewrite Rules

not locally confluent since does not conflate

Establishing Local Confluence
Sometimes non-locally confluent (i.e. test fails)

x∗e ⇒ x
f∗x ⇒ x

〈 f ,e 〉

However, we can add a new rule, to make this
critical pair joinable

f ⇒ e

CARE:

 Adding the new rule
● must preserve termination
● might give rise to new critical pairs

need to start over again and check local confluence

Automated Reasoning Lecture 8, page 20Rewrite Rules

Knuth-Bendix Completion
Set of rewrite rules R, known to be terminating

1. let i=0 and R1 = R
2. increment i by 1
3. find all critical pairs (c.p.s) of all pairs of rules in Ri

4. for all c.p.s. 〈a,b 〉 ,
− find a normal form a' of a
− find a normal form b' of b

5. if a' ≡ b' , extend the set Ri to Ri1 as follows:
if Ri ∪ {a' ⇒ b'}is terminating, let
Ri1 = Ri ∪ {a' ⇒ b'}and goto step 2
if Ri ∪ {b' ⇒ a'}is terminating, let
Ri1 = Ri ∪ {b' ⇒ a'}and goto step 2
if neither is terminating then exit with FAIL

6. let R∗ = Ri

IF the above procedure terminates without failure THEN R∗ is confluent

Automated Reasoning Lecture 8, page 21Rewrite Rules

Rewriting in Isabelle
● In Isabelle, the powerful tactic simp performs rewriting
● Many useful lemmas already added to the simplifier – hence power of

simp and auto.
● You can control rewrite rules used by simplifier

– To add, delete, or use only a limited set, in a single proof step,
write:
 apply (simp add: eq1 .. eqn) (or del: or only:)

– To add a lemma permanently as a rewrite rule, insert [simp]
after its name when you are defining it

– A lemma P that is not of the form L=R will be interpreted
implicitly as P=True when used as a rewrite rule

– Simp rule xxx_def will expand a definition (of xxx)

Automated Reasoning Lecture 8, page 22Rewrite Rules

More on rewriting in Isabelle
● Conditional rewriting: a lemma with assumptions is applied if the

simplifier can prove the assumptions
 [| P1; ... ; Pn |] ==> l = r

● Ordered rewriting: a lexicographical (dictionary) ordering can be
used to prevent endless loops, e.g. to prevent:
 a + b ⇒ b + a ⇒ a + b ⇒ . , ,

● More control:
● apply (simp (no_asm_simp) ...)

 Simplify only the conclusion (the “...” might be one or more
modifiers (add,del,only), or nothing at all)

● apply (simp (no_asm_use) ...)
 Simplify everything, but without using the assumptions

● Apply (simp (no_asm) ...)
 Simplify only the conclusion, without using the assumptions

Automated Reasoning Lecture 8, page 23Rewrite Rules

Summary
● Rewrite rules are a powerful technique

for automated reasoning

● A rule set gives canonical normal forms if it is

– (1) terminating; and

– (2) locally confluent
● We show (1) by finding a monotonic measure

● We show (2) using critical pairs and the Knuth-Bendix
procedure to try to make confluent set from a non-
confluent set. (This does not always work.)

● In Isabelle, we have a lot of control over the rewrites.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

