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Term Rewriting
● Rewriting is a technique for replacing terms in an 

expression with equivalent terms

– useful for simplification, e.g.

● given “x✴0=0”, we can rewrite “x+(x✴0)” to “x+0”
● and if “x+0=x”, we can rewrite further to just “x”

– uses “one-way” unification i.e. matching

● We use the notation L ⇒ R to define a rewrite rule that 
replaces the term L with the term R in an expression
(and not vice versa).
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The Power of Rewrites

0 + n ⇒ n                               (1)
(0 ≤ m) ⇒ True                     (2)
s(m) + n ⇒ s(m + n)     (3)
s(m) ≤ s(n) ⇒ m ≤ n    (4) 

Given this set 
of rewrite rules:

This statement is
easily proved: 

0 + s(0) ≤ s(0) + x

by (1), s(0) ≤ s(0) + x
by (3), s(0) ≤ s(0 + x)
by (4), 0 ≤ 0 + x
by (2), True
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Peano Arithmetic
The rewrites in our previous slide are part of a common 
foundation for the natural numbers, called Peano Arithmetic.
s is the successor function, so 1 is defined as s(0).

For addition and multiplication, 
we often have these rewrites:

Example:
s(s(0))✴s(0) = s(0)✴s(0)+s(0) by (4), [s(0)/x,s(0)/y]

= 0✴s(0)+s(0)+s(0) by (4), [0/x,s(0)/y]
=     ⋮
= s(s(0))

0x ⇒ x
s x y ⇒ s xy 
0∗x ⇒ 0
s x ∗y ⇒ x∗yy

In this example, the final expression is ground (contains only 
constants).  Rewriting is useful even if this is not the case.  
This is called symbolic evaluation: s 0s a ⇒  ⇒ s s a

(1)
(2)
(3)
(4)

Exercise:  fill in the missing steps
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Rewrite Rule of Inference

We use the notation P{t} to mean
that the expression P contains a 
subexpression t.

Note: rewrite rule of inference uses 
matching not unification

Example:

Given an expression (s(A)+s(0))+s(B)
and a rewrite rule  s(x)+y ⇒ s(x+y)
we can find t = s(A)+s(0)
and φ = [A/x, s(0)/y]

 

Rewriting gives us s(A+s(0))+s(B)

P{t}     L⇒R     Lφ≡t
P{Rφ}
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A rewrite rule α ⇒ β should satisfy the following restrictions:

● α is not a variable

– e.g.  x ⇒ x+1 if the LHS can match anything,
it's very hard to control!

● vars(β) ⊆ vars(α)

– e.g.  0 ⇒ 0✴x if we start with a ground term,
we should always have a ground term

Some Restrictions
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Algebraic Simplification

Example: a 2∗0
∗5  b∗0

= a 0
∗5  b∗0 by (1)

= 1∗5  b∗0 by (3)
= 5  b∗0 by (2)
= 5  0 by (1)
= 5 by (4)

●Terminology: Any subexpression that can be rewritten (i.e. 
matches the LHS of a rewrite rule) is called a redex.  
(This is short for reducible expression.)

●There is sometimes a choice:
● which subexpression to rewrite
● which rule to use

1. x∗0 ⇒ 0
2. 1∗x ⇒ x
3. x0

⇒ 1
4. x0 ⇒ x
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e.g. apply                                    to

e.g. apply                      to

Partial Rewrite Search Tree

a 2∗0
∗5b∗0

a 0
∗5b∗0 a 2∗0

∗50

a 2∗0
∗5a0

∗50a 0
∗50

1∗5b∗0

  Common strategies:
● innermost (inside-out) leftmost redex  (1st redex in post-order traversal)

● outermost (outside-in) leftmost redex  (1st redex in pre-order traversal)

  

Important Questions:
● Is the tree finite (does the rewriting process always end) ?
● Does it matter in which order rewrites are applied

(or are all the leaf nodes the same) ?

0∗s 0s0s 0∗00∗x ⇒ 0

0⋅s0s 0s0xsy ⇒ sxy 
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Logical Interpretation
● A rewrite rule L ⇒ R on its own is just a “replace” instruction;

to be useful, it must have some logical meaning attached!

● Most commonly, a rewrite L ⇒ R is permitted only if  L=R

– This is how Isabelle uses rewrites

– Rewrites can instead be based on implications and other 
formulas (e.g. a = b mod n), but one must take great care 
that rewriting corresponds to logically valid steps.

● But of course, not everything that can be a rewrite rule
should be a rewrite rule!  Rewrite sets are picked carefully:

– Ideally they terminate (see next slide)

– And ideally they rewrite an expression to a simplified 
canonical normal form (covered later in lecture)
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Termination
We say that a set of rewrites rules terminates iff:

 

starting with any expression, successively applying rewrite rules 
eventually brings us to a state where no more rewrites apply

– All the rewrite rule sets encountered so far in this lecture terminate; 
there is no way to loop or apply them without end

– The following rewrite rules may cause a set to be non-terminating

● a reflexive rewrite (such as 0 ⇒ 0)
● a self-commuting rewrite (such as x✴y ⇒ y✴x)
● a commutative pair (such as

x+(y+z) ⇒ (x+y)+z and (x+y)+z ⇒ x+(y+z) )

● An expression to which no rewrites apply is called a normal form 
with respect to our set of rewrites
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Proving Termination

1. x∗0 ⇒ 0
2. 1∗x ⇒ x
3. x0

⇒ 1
4. x0 ⇒ x

Termination can be shown by defining a natural number measure on 
an expression such that each rewrite rule decreases the measure.

Example:

a 2∗0 ∗5  b∗0 measure = 5
= a 0

∗5  b∗0 measure = 4
= 1∗5  b∗0 measure = 3
= 5  b∗0 measure = 2
= 5  0 measure = 1
= 5 measure = 0

For this set of algebraic rewrites, define 
the measure of an expression as as the 
count of the number of binary operations 
(plus, times, or exp) it contains.

Since any rule application will decrease 
the measure of an expression, and since 
the measure cannot go past zero, this set 
of rewrites will always terminate.

For a2✴0✴5 + b✴0, one possible sequence 
of rewrite rules is shown at left.  It 
terminates with normal form 5.
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Notation
● We use ⇒ to indicate an application of a rewrite rule as well 

as the declaration of the rewrite rule; e.g. given a rule x+0⇒x, 
we may denote the fact that 5+0 rewrites to 5 as 5+0⇒5

● When considering rewrite systems, it can be useful to speak 
of multi-step rewrites:  we use ⇒* to mean zero or more 
rewrite steps; e.g.

if our set contains a ⇒ b and b ⇒ c, we can write a ⇒* c;
in the previous example, a2*0

✴5 + b✴0 ⇒* 5

● We will also use the notations:
a ⇔ b  for  a ⇒ b  or  b ⇒ a 
a ⇔* b  for  there is some chain of zero or more 
u

1
, u

2
, ..., u

n
 such that:  a ⇔ u

1 
⇔ u

2 
⇔ ... ⇔ u

n 
⇔ b 

● In diagrams, we draw     *   , or      *   to represent ⇒* and ⇔*
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Canonical Normal Form
   Depending on our set of rewrite rules, 

the order of application might 
affect the result.

We might have s ⇒* t1, s ⇒* t2,
s ⇒* t3, s ⇒* t4, and s ⇒* t5,
with t1, t2, t3, t4, and t5 normal.

If all normal forms arising from an expression are identical,
we say we have a canonical normal form of the expression.

This is a very nice property!  It means that the order doesn't 
matter; in this example, it would mean all the tn are identical.
In general, this property means our rewrites are simplifying 
the expression in a canonical (safe) way.

s

t1t1
t3

t5t2 t4
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Church-Rosser and Confluence
How do we know if our set gives canonical normal forms?

Two definitions are helpful:
● A set of rewrite rules is confluent if:

for all terms r, s1 and s2 such that r ⇒* s1 and
r ⇒* s2 (by different sequences of rewrite rules),  
there exists a term t such that s1 ⇒* t and s2 ⇒* t 

● A set of rewrite rules is Church-Rosser if for all terms s1 and s2 such 
that s1 ⇔* s2, there exists a term t such that s1 ⇒* t and s2 ⇒* t

Theorem:  Church-Rosser is equivalent to confluence

Theorem:  for terminating rewrite sets, these properties mean 
that any expression will rewrite to a canonical normal form

s1

t

s2

r

*   

* 

   *

 *
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Local Confluence
The properties of Church-Rosser and confluence can be 
difficult to prove.  A weaker definition is very useful:

A set of rewrite rules is locally confluent if:
for all terms r, s1 and s2 such that r ⇒ s1 and
r ⇒ s2 (by a different rewrite rule), there
exists a term t such that s1 ⇒* t and s2 ⇒* t 

Theorem:
 

local confluence + termination = confluence

Furthermore:  local confluence is decidable (due to Knuth & Bendix)

Both the theorem and the decision procedure use the idea of critical pairs.

s1

t

s2

r

   

* 

   

 *
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 How can choices arise in rewriting?
● Multiple rewrite rules apply to a single redex:  order might matter
● Rewrite rules apply to multiple redexes

– if they are separate, order does not matter

– but if one contains the other, the choice of order may matter 

Examples:

(1) x0 ⇒ 1 00 rewrites to:  1, by (1) 〈1,0〉
(2) 0y ⇒ 0 and to:  0, by (2)

(1) w e ⇒ w (x  e)  z  rewrites to:
(2) (x  y) z ⇒ x  (y  z) x  z, by (1) and x  (e  z), by (2)      〈x  z, x  (e  z)〉

We are interested in the case where order matters; i.e. one subexpression is 
totally contained within another subexpression.

Choices in Rewriting

these are 
instances of 
what we call 
critical pairs   
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●Given two rules L1 ⇒ R1 and L2 ⇒ R2, we are concerned with the case 
when there exists a sub-term s of L1  such that sθ≡L2θ, with most 
general unifier θ

Applying these rules in different orders gives rise to a critical pair 

Critical Pairs 

Critical pair: < R1θ , L1θ[R2θ / sθ] >

L1θ[ R2θ / sθ ]

L1θ 

      

R1θ 

L1θ ⇒ R1θ
s[θ] is a sub-term of L1θ 
s[θ] ≡ L2θ    and
L2[θ] ⇒ R2θ N.B. the two rules should 

have no variables in common;
if they do, we must rename 
them in order to find the mgu θ 

 w e ⇒ w
     (x  y) z ⇒ x  (y  z)

example:

θ = [w/x, e/y], any other?
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 We are interested in whether we can conflate all the possible 
critical pairs i.e. given r ⇒ s1 and r ⇒ s2, for expressions r, s1, 
and s2, can we find a t such that s1 ⇒* t and s2 ⇒* t ?

The following algorithm is used to test for local confluence:

Assumption: Set of rewrite rules R is known to be terminating

Find all critical pairs of all pairs of rules in R

For each critical pair <a, b>, check that it is joinable (or 
conflatable)

find a normal form a' of a
find a normal form b' of b
check that a' ≡ b';

FAIL if they are different

Testing for Local Confluence
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not locally confluent since         does not conflate

Establishing Local Confluence
Sometimes non-locally confluent (i.e. test fails)

x∗e ⇒ x
f∗x ⇒ x

〈 f ,e 〉

However, we can add a new rule,            to make this 
critical pair joinable

f ⇒ e

CARE:

 Adding the new rule 
● must preserve termination
● might give rise to new critical pairs

need to start over again and check local confluence
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Knuth-Bendix Completion
Set of rewrite rules R, known to be terminating

1.  let i=0 and R1 = R
2.  increment i by 1
3.  find all critical pairs (c.p.s) of all pairs of rules in Ri

4.  for all c.p.s. 〈a,b 〉 ,
− find a normal form a' of a
− find a normal form b' of b

5.  if a' ≡ b' , extend the set Ri to Ri1 as follows:
if Ri ∪ {a' ⇒ b'}is terminating, let
Ri1 = Ri ∪ {a' ⇒ b'}and goto step 2
if Ri ∪ {b' ⇒ a'}is terminating, let
Ri1 = Ri ∪ {b' ⇒ a'}and goto step 2
if neither is terminating then exit with FAIL

6.  let R∗ = Ri

IF the above procedure terminates without failure THEN R∗ is confluent
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Rewriting in Isabelle
● In Isabelle, the powerful tactic simp performs rewriting
● Many useful lemmas already added to the simplifier – hence power of 

simp and auto.
● You can control rewrite rules used by simplifier

– To add, delete, or use only a limited set, in a single proof step, 
write: 
    apply (simp add: eq1 .. eqn)  (or del: or only:)

– To add a lemma permanently as a rewrite rule, insert [simp] 
after its name when you are defining it

– A lemma P that is not of the form L=R will be interpreted 
implicitly as P=True when used as a rewrite rule

– Simp rule xxx_def will expand a definition (of xxx)
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More on rewriting in Isabelle
● Conditional rewriting: a lemma with assumptions is applied if the 

simplifier can prove the assumptions
    [| P1; ... ; Pn |] ==> l = r

● Ordered rewriting: a lexicographical (dictionary) ordering can be 
used to prevent endless loops, e.g. to prevent:
 a + b ⇒ b + a ⇒ a + b ⇒ .  ,  ,

● More control:
● apply (simp (no_asm_simp) ...)

    Simplify only the conclusion (the “...” might be one or more        
modifiers (add,del,only), or nothing at all)

● apply (simp (no_asm_use) ...)
   Simplify everything, but without using the assumptions

● Apply (simp (no_asm) ...)
   Simplify only the conclusion, without using the assumptions
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Summary
● Rewrite rules are a powerful technique 

for automated reasoning

● A rule set gives canonical normal forms if it is

– (1) terminating; and

– (2) locally confluent
● We show (1) by finding a monotonic measure

● We show (2) using critical pairs and the Knuth-Bendix 
procedure to try to make confluent set from a non-
confluent set.  (This does not always work.)

● In Isabelle, we have a lot of control over the rewrites.
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