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Representing Knowledge

We are faced with several choices when formalising a theory:
I Which type of logic to use?

I Propositional Logic;
I First-Order Logic;
I Others (such as Higher-Order Logic, which we will cover)

I Do we need axioms?

I How do we represent the concepts of our domain?
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Logic and Notation

I Early slides use mixture of single-sorted FOL and multi-sorted
FOL formulas, though also can be read as HOL formulas.

I Later will introduce HOL and contrast it with multi-sorted
FOL

I Multi-sorted FOL primer
I Sorts (types): bool , int, real , α× β, αset
I Still terms (individuals) and formulas are distinct syntactic

categories
I Use > and ⊥ both as formulas and terms of bool sort. Intent

will be clear from context
I Functions have argument and result sorts: f : (α, β)γ
I Relations have argument sorts: R : (α, β)
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Axioms

Consider the natural numbers N = {0, 1, 2, . . .}. How do we prove facts
about them? For example: how do we prove that every natural number
greater than 1 has a prime divisor?
Axiomatically

I We take natural numbers as primitive, and assume unproven axioms
about them. For instance, we assume the Peano axioms:

∀n. n + 0 = n.

∀m n. (m + S(n)) = S(m + n)

. . .

I Everything we want to prove about natural numbers are proven
from the axioms.

I But how do we know that our axioms are adequate? Are they
complete?

I How do we know that our axioms are consistent?
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Axioms and Definition (II)

Conservatively

I We define the natural numbers in terms of other objects. For
instance, we identify the natural numbers with Von Neumann
ordinals: 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, .... The theory of
natural numbers is then the theory of Von Neumann ordinals.

I But how do we find suitable definitions?

We can mix this with the axiomatic approach: we define natural
numbers in terms of Von Neumann ordinals and then prove the
Peano Axioms on this interpretation.
This approach guarantees relative consistency: if the theory of
Von Neumann ordinals is consistent, so is the theory of natural
numbers.
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Representation Examples (Integers)

Starting from the natural numbers N = {0, 1, 2, . . .}, we can define:

I each integer Z = {. . . ,−2,−1, 0, 1, 2, . . .} as an equivalence class
of pairs of natural numbers under the relation
(a, b) ∼ (c , d)←→ a + d = b + c ;

I For example, −2 is represented by the equivalence class
[(0, 2)] = [(1, 3)] = [(100, 102)] = . . ..

I we define the sum and product of two integers as

[(a, b)] + [(c , d)] = [(a + c , b + d)]

[(a, b)]× [(c , d)] = [(ac + bd , ad + bc)] ;

I we define the set of negative integers as the set {[(a, b)] | b > a} .
I Exercise: show that the product of negative integers is non-negative.
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Other Representation Examples

I The rationals Q can be defined as pairs of integers. Reasoning
about the rationals therefore reduces to reasoning about the
integers.

I The reals R can be defined as sets of rationals. Reasoning
about the reals therefore reduces to reasoning about the
rationals.

I The complex numbers C can be defined as pairs of reals.
Reasoning about the complex numbers therefore reduces to
reasoning about the reals.

I In this way, we have relative consistency.
I If the theory of natural numbers is consistent, so is the theory

of complex numbers.
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Functional Representation

I When defining concepts in our theory, we often have a choice
between using functions and predicates.

I For example, suppose we represent division of real numbers
(/) by a function div : (real , real)real .

I We define div(x , y) when y 6= 0 in normal way
I What about division-by-zero? What is the value of div(x , 0)?
I In first-order logic, functions are assumed to be total, so we

have to pick a value!
I We could choose a convenient element: say 0. That way:

0 ≤ x → 0 ≤ 1/x .
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Predicate Representation

Q) Can we represent division of real numbers (/) by a relation
Div : (real , real , real) such that Div(x , y , z) is

I x/y = z when y 6= 0, and

I ⊥ when y = 0?

A) Yes: Div(x , y , z) ≡ x = y ∗ z ∧ ∀w . x = y ∗ w −→ z = w
That is, z is that unique value such that x = y ∗ z .

But now formulas are more complicated.

x , y 6= 0 −→ 1

((x/y) /x)
= y

becomes

Div(x , y , u) ∧ Div(u, x , v) ∧ Div(1, v ,w) ∧ x , y 6= 0 −→ w = y
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Functional Representation

Can we represent the concept of square roots with a function
√

: (real)real?

I All positive real numbers have two square roots, and yet a function
maps points to single values.

I We can pick one of the values arbitrarily: say, the positive
(principal) square root.

I Or we can have the function map every real to a set
√

: (real)real set: √
x ≡

{
y | x = y2

}
.

I But now we have two kinds of object: reals and sets of reals, and
we cannot conveniently express:

(
√

x)2 = x

I Our representation of reals is no longer self-contained.
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Predicate Representation

Q) Can we represent the concept of square roots with a relation
Sqrt : (real , real)?

A) Yes. E.g. Sqrt(x , y) ≡ x = y2.

Again drawback of formulas being more complicated
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Functions, Predicates and Sets

Any function f : (α)β can be represented as a relation R : (α, β) or a set
S : (α× β)set by defining:

R(x , y) ≡ f (x) = y

S ≡ {(x , y) | f (x) = y}.

Any predicate P can be represented by a function f or a set S by defining:

f (x) ≡
{

True : P(x)
False : otherwise

S ≡ {x | P(x)}.

Any set S can be represented by a function f or a predicate P by defining:

f (x) ≡
{

True : x ∈ S
False : otherwise

P(x) ≡ x ∈ S
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Set Theory

In pure (without axioms) single-sorted FOL, we cannot directly
represent the statement:

there is a function that is larger on all arguments than
the log function.

To formalise it, we would need to quantify over functions:

∃f .∀x .f (x) > log x .

Likewise we cannot quantify over predicates.

Solutions in FOL:

I Represent all functions and predicates by sets, and quantify
over these. This is the approach of first-order set theories
such as ZF.

I Introduce sorts for predicates and functions. Not so elegant
now having 2 kinds of each.
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Higher-Order Logic (HOL)

Alternatively...
In HOL, we represent sets and predicates by functions, often
denoted by lambda abstractions.

Definition (Lambda Abstraction)

Lambda abstractions are terms which denote functions directly by
the rules which define them. E.g. the square function is denoted
by λx . x ∗ x .
We can use lambda abstractions exactly as we use ordinary
function symbols. E.g. (λx . x ∗ x) 3 = 9.
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Higher-order Functions

We can define functions which map from and to other functions.

Example

The K -combinator maps some x to a function which sends any y
to x .

λx . λy . x .

Example

The composition function maps two functions to their composition:

λf . λg . λx . f (g x).
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Representation of Logic in HOL I

I Types bool , ind (individuals) and α⇒ β primitive. All others
defined from these.

I Start with equality function = : α⇒ α⇒ bool . All other functions
defined using this, lambda abstraction and application.

I Distinction between formulas and terms is dispensed with: formulas
are just terms of type bool .

I Definition of product type

α× β .
= (α⇒ β ⇒ γ)⇒ γ

(x , y)
.

= λf . f x y .
π1 p

.
= p(λxy . x)

π2 p
.

= p(λxy . y)
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Representation of Logic in HOL II

I Conjunction as pairs:

x ∧ y ≡ (x , y) = (True,True).

I Universal quantification as function equality:

∀x . φ ≡ (λx . φ) = (λx .True) .

I Predicates and sets can be represented by functions.

I Therefore, we can quantify over functions, predicates and sets.
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