
Automated Reasoning

Jacques Fleuriot

September 30, 2013

1 / 26

Lecture 5

Natural Deduction in First-order Logic1

Jacques Fleuriot

1With contributions by Paul Jackson
2 / 26

Problem

Consider the following problem:

1. If someone cheats then everyone loses the game.

2. If everyone who cheats also loses, then I lose the game.

3. Did I lose the game?

Is Propositional Logic rich enough to formally represent and
reason about this problem?
The finer logical structure of this problem would not be captured
by the constructs we have so far encountered.
We need a richer language!

3 / 26

A Richer Language

First-order predicate logic (FOL) extends propositional logic:

I Atomic formulas are now assertions about the properties of an
individual.
e.g. an individual might have the property of being a cheat.

I We can use variables to denote arbitrary individuals.
e.g. x is a cheater.

I We can bind variables with quantifiers ∀ (for all) and ∃ (there
exists).
e.g. for all x , x is a cheater.

I We can use connectives to compose formulas:
e.g. for all x , if x is a cheater then x loses.

I We can use quantifiers on subformulas.
e.g. we can formally distinguish between: “if anyone cheats
we lose the game” and “if everyone cheats, we lose the game”.

4 / 26

Terms of FOL

Given a countably infinite set of (individual) variables
V = {x , y , z , . . .} and a finite or countably infinite set of function
letters F each assigned a unique arity (possibly 0), then the set of
terms is the smallest set such that

I any variable v ∈ V is a term;

I if f ∈ F has arity n, and t1, . . . tn are terms, so is f (t1 . . . tn).

Remark

I If f has arity 0, we usually write f rather than f (), and call f
a constant

5 / 26

Formulas of FOL

Given a countably infinite set of predicates P, each assigned a
unique arity (possibly 0), the set of wffs is the smallest set such
that

I if P ∈ P has arity n, and t1, . . . tn are terms, then
P (t1 . . . tn) is a wff;

I if φ and ψ are wffs, so are ¬φ, φ ∨ ψ, φ ∧ ψ, φ −→ ψ,
φ←→ ψ,

I if φ are wffs, so are ∃x . φ and ∀x . φ for any x ∈ V;
I if φ is a wff, then (φ) is a wff.

Remarks
I If P has arity 0, we usually write P rather than P(), and call

P a propositional variable
I We assume ∃x and ∀x bind more weakly than any of the

propositional connectives.
∃x .φ ∧ ψ is ∃x .(φ ∧ ψ), not (∃x .φ) ∧ ψ.
(NB: H&R assume ∃x and ∀x bind like ¬.)

6 / 26

Example: Problem Revisited

We can now formally represent our problem in FOL:

Assumption 1 If someone cheats then everyone loses the game:
(∃x .Cheats(x)) −→ ∀x . Loses(x).

Assumption 2 If everyone who cheats also loses, then I lose the
game :
(∀x .Cheats(x) −→ Loses(x)) −→ Loses(me).

To answer the question Did I lose the game? we need to prove
either Loses(me) or ¬Loses(me) from these assumptions.

More on this later.

7 / 26

Free and Bound Variables

I An occurrence of a variable x in a formula φ is bound if it is
in the scope of a ∀x or ∃x quantifier.

I A variable occurrence x is in the scope of a quantifier
occurrence ∀x or ∃x if the quantifier occurrence is the first
occurrence of a quantifier over x in a traversal from the
variable occurrence position to the root of the formula tree.

I If a variable occurrence is not bound, it is free

Example

In
P(x) ∧ ∀x .P(y) −→ P(x)

The first occurrence of x and the occurrence of y are free, while
the second occurrence of x is bound.

8 / 26

Substitution Rules

If φ is a formula, s is a term and x is a variable, then

φ [s/x]

is the formula obtained by substituting s for all free
occurrences of x throughout φ.

Example

(∃x .P(x , y)) [3/y] = ∃x .P(x , 3).

(∃x .P(x , y)) [2/x] = ∃x .P(x , y).

If necessary, bound variables in φ must be renamed to avoid
capture of free variables in s.

(∃x .P(x , y)) [f (x)/y] = ∃z .P(z , f (x))

9 / 26

Semantics of FOL Formulas

Informally, an interpretation of a formula maps its function letters
to actual functions, and its predicate symbols to actual predicates.
The interpretation also specifies some domain D (a non-empty
set or universe) on which the functions and relations are defined.
A formal definition requires some work!

10 / 26

Semantics of FOL Formulas (II)

Definition (Interpretation)

An interpretation consists of a non-empty set D, called the
domain of the intepretation, together with the following
assignments

1. each predicate letter of arity n > 0 is assigned to a subset of
D×· · ·×D. Each nullary predicate is assigned either T or F.

2. Each function letter of arity n > 0 is assigned to a function
(D × · · · × D)→ D. Each nullary function (constant) is
assigned to a value in D.

11 / 26

Example of Interpretation

Consider the formula:

P(a) ∧ ∃x .Q(a, x) ∗ .

In one possible interpretation:

I the domain is the set of natural numbers N = {0, 1, 2, 3, . . .};
I assign 2 to a, assign the property of being even to P, and the

relation of being greater than to Q, i.e. Q(x , y) means x is
greater than y ;

I under this interpretation: (∗) affirms that 2 is even and there
exists a natural number that 2 is greater than. Is (∗) satisfied
under this interpretation? — Yes.

I Such a satisfying interpretation is sometimes known as a
model.
NB: In H&R, a model is any interpretation.

12 / 26

Semantics of FOL Formulas (III)

Definition (Assignment)

Given an interpretation M, an assignment s assigns a value from
the domain D to each variable in V.

We extend this assignment to all terms inductively by saying that

1. if M maps the n-ary function letter f to the function F , and

2. if terms t1, . . . , tn have been assigned values a1, . . . , an ∈ D

then we can assign value F (a1, . . . , an) ∈ D to the term
f (t1, . . . , tn).

An assignment s of values to variables is also commonly known as
an environment and we denote by s[x 7→ a] the environment that
maps x ∈ D to a (and any other variable y ∈ D to s(y)).

13 / 26

Semantics of FOL Formulas (IV)

Definition (Satisfaction)

Given an interpretation M and an assignment s from V to D
1. any wff which is a nullary predicate letter P is satisfied if and

only if the interpretation in M of P is T;

2. suppose we have a wff φ of the form P(t1 . . . tn), where P is
interpreted as relation R and t1, . . . , tn have been assigned
values a1, . . . , an by s. Then φ is satisfied if and only if
(a1, . . . , an) ∈ R;

3. any wff of the form ∀x .φ is satisfied if and only if φ is satisfied
with respect to assignment s[x 7→ a] for all a ∈ D;

4. any wff of the form ∃x .φ is satisfied if and only if φ is satisfied
with respect to assignment s[x 7→ a] for some a ∈ D;

5. any wffs of the form φ ∨ ψ, φ ∧ ψ, φ −→ ψ, φ←→ ψ, ¬φ are
satisfied according to the truth-tables for each connective (e.g.
φ ∨ ψ is satisfied if and only if φ is satisfied or ψ is satisfied.

14 / 26

Semantics of FOL Formulas (V)

Definition (Entailment)

We write M |=s φ to mean that wff φ is satisfied by interpretation
M and assignment s.

We say that the wffs φ1, φ2, . . . , φn entail wff ψ and write

φ1, φ2, . . . , φn |= ψ

if, for any interpretation M and assignment s for which M |=s φi
for all i , we also have M |=s ψ
As with propositional logic, we must ensure that our inference rules
are valid. That is, if

φ1 φ2 . . . φn
ψ

then we must have φ1, φ2, . . . , φn |= ψ.

15 / 26

More Introduction Rules

We now consider the additional natural deduction rules we need for
FOL.

φ [x0/x]

∀x . φ allI

φ [t/x]

∃x . φ exI

Provided that x0 is not free in
the assumptions.

16 / 26

Existential Elimination

∃x . φ

[φ [x0/x]]
....
Q

Q
exE

Provided x0 does not
occur in Q or any
assumption other than
φ [x0/x] on which the
derivation of Q from
φ [x0/x] depends.

17 / 26

Universal Elimination

Specialisation rule:
∀x . φ
φ [t/x]

spec

An alternative universal elimination rule is allE :

∀x . φ

[φ [t/x]]
....
Q

Q
allE

18 / 26

Example Proof

Prove that ∃y .P(y) is true, given that ∀x .P(x) holds.

∀x .P(x)

P(a)
spec

∃y .P(y)
exI

19 / 26

Example Proof (II)

Prove that ∀x .Q(x) is true, given that ∀x .P(x) and
(∀x .P(x) −→ Q(x)) both hold.

∀x .P(x) −→ Q(x)

∀x .P(x)

[P(y) −→ Q(y)]2 [P(y)]1
Q(y)

mp

Q(y)
allE1

Q(y)
allE2

∀x .Q(x)
allI

20 / 26

Problem (III)

Prove that Loses(me) given that

1. (∃x .Cheats(x)) −→ ∀x . Loses(x) .

2. (∀x .Cheats(x) −→ Loses(x)) −→ Loses(me).

assumption2

assumption1

[Cheats(y)]1
∃x .Cheats(x)

exI

∀x . Loses(x)
mp

Loses(y)
spec

Cheats(y) −→ Loses(y)
impI1

∀x .Cheats(x) −→ Loses(x)
allI

Loses(me)
mp

21 / 26

FOL in Isabelle-HOL

Isabelle’s HOL object logic is richer than the FOL so far presented.
All variables, terms and formulas have types.
The type language is built using

base types such as bool (the type of truth values) and nat (the
type of natural numbers).

type constructors such as list and set which are written postfix,
i.e. nat list.

function types written using ⇒; e.g.

nat × nat ⇒ nat

which is a function taking two arguments of type nat
and returning an object of type nat.

type variables such as ′a, ′b etc. These give rise to polymorphic
types such as ′a⇒ ′a.

22 / 26

FOL in Isabelle-HOL (II)

I Consider the mathematical predicate a = b mod n. We could
formalise this operator as:
constdefs mod :: "int × int × int ⇒ bool"

"mod (a,b,n) ≡ ∃ k. a = k * n + b"

I Isabelle performs type inference, allowing us to write:

∀x y n.mod(x , y , n) −→ mod(y , x , n)

instead of

∀(x :: int) (y :: int) (n :: int).mod(x , n, y) −→ mod(y , n, x)

23 / 26

Addendum: FOL L-System Sequent Rules

∀
Γ ` φ[x0/x]

Γ ` ∀x . φ allI
Γ, φ[t/x] ` ψ
Γ, ∀x . φ ` ψ e allE t

Γ, ∀x . φ, φ[t/x] ` ψ
Γ, ∀x . φ ` ψ f spec t

∃
Γ ` φ[t/x]

Γ ` ∃x . φ exI
Γ, φ[x0/x] ` ψ
Γ, ∃x . φ ` ψ e exE t

Γ, ∀x .¬φ ` ⊥
Γ ` ∃x . φ exCIF

I Rule prefixes: e = erule, f = frule

I x0 is some variable not free in hypotheses or conclusion of rule conclusion.
With Isabelle, name automatically chosen.

I When t suffix is used above (e.g. as in e allE t), then the term t can be
explicitly specified in Isabelle method using a variant of the existing
method. e.g. apply (erule tac x="t" in allE).

I Rule exCIF is a variation on standard Isabelle rule exCI , introduced in the
3rd set of self-help exercises.

24 / 26

Addendum: Example II as FOL Sequent Proof

P(y) ` P(y)
assum

P(y), Q(y) ` Q(y)
assum

P(y) −→ Q(y), P(y) ` Q(y)
e impE

P(y) −→ Q(y), (∀x .P(x)) ` Q(y)
e allE y

(∀x .P(x) −→ Q(x)), (∀x .P(x)) ` Q(y)
e allE y

(∀x .P(x) −→ Q(x)), (∀x .P(x)) ` ∀x .Q(x)
allI

25 / 26

Summary

I Introduction to FOL
I syntax and semantics;
I substitution;
I intro and elimination rules for quantifiers.

I Isabelle
I declaring predicates;
I a brief look at types.

I Next time: matters of representation.

26 / 26

