Inductive Theorem Proving

Automated Reasoning

Petros Papapanagiotou

P.Papapanagiotou@sms.ed.ac.uk

11 October 2012

Petros Papapanagiotou Inductive Theorem Proving

General Induction

Theorem Proving

Proof Assistants:

- Formalise theories and prove properties.
- Ensure soundness and correctness.
- Interactive vs. Automated
- Decision procedures, model elimination, rewriting, counterexamples,...
- eg.
 - Interactive: Isabelle, Coq, HOL Light, HOL4, ...
 - Automated: ACL2, IsaPlanner, SAT solvers, ...

Induction

- Inductive datatypes are everywhere!
 - Mathematics (eg. arithmetic)
 - Hardware & software models
 - ...

Induction Natural Numbers

Definition (Natural Numbers)

0, *Suc n*

Petros Papapanagiotou Inductive Theorem Proving

Induction Natural Numbers

Definition (Natural Numbers)

0, *Suc n*

Example

• Suc 0 = 1

• Suc (Suc (Suc 0) = 3

Induction Natural Numbers

Definition (Natural Numbers)

0, *Suc n*

Example

• Suc 0 = 1

• Suc (Suc (Suc 0) = 3

Induction principle

$$\frac{P(0) \qquad \forall n. \ P(n) \Rightarrow P(Suc \ n)}{\forall n. \ P(n)}$$

Petros Papapanagiotou Inductive Theorem Proving

Induction Lists

Definition (Lists)

[], *h* # *t*

Petros Papapanagiotou Inductive Theorem Proving

Induction Lists

Definition (Lists)

[], *h* # *t*

Example

•
$$1 \# (2 \# []) = [1, 2]$$

• 1 # (2 # (3 # [])) = [1, 2, 3]

Induction Lists

Definition (Lists)

[], *h* # *t*

Example

•
$$1 \# (2 \# []) = [1,2]$$

•
$$1 \# (2 \# (3 \# [])) = [1, 2, 3]$$

Induction principle

$$\frac{P([]) \quad \forall h.\forall l. P(l) \Rightarrow P(h \# l)}{\forall l. P(l)}$$

Petros Papapanagiotou Inductive Theorem Proving

Induction Binary Partition Trees

Definition (Partition)

Empty, Filled, Branch partition1 partition2

Petros Papapanagiotou Inductive Theorem Proving

Induction Binary Partition Trees

Definition (Partition)

Empty, Filled, Branch partition1 partition2

Example

Induction **Binary Partition Trees**

Definition (Partition)

Empty, Filled, Branch partition1 partition2

Example

Branch Empty (Branch Filled Filled)

Ε F

Induction principle (partition.induct)

 $P(Empty) \quad P(Filled) \quad \forall p1 \ p2. \ P(p1) \land P(p2) \Rightarrow P(Branch \ p1 \ p2)$ \forall partition. P(partition)

Petros Papapanagiotou

Inductive Theorem Proving

Inductive Proofs Generally

- Symbolic evaluation (rewriting).
 - Axioms definitions
 - Rewrite rules
- Fertilization (use induction hypothesis).

Inductive Proofs Simple Example: List Append

Definition (List Append ⁽⁰⁾)

Example ([1; 2] @ [3] = [1; 2; 3]**)**

Inductive Proofs Simple Example: List Append

Definition (List Append ⁽⁰⁾)

Theorem (Associativity of Append)

 $\forall k. \forall l. \forall m. k @ (l @ m) = (k @ l) @ m$

Base Case.

$$\vdash [] @ (I @ m) = ([] @ I) @ m$$

$$\stackrel{1}{\longleftrightarrow} I @ m = ([] @ I) @ m$$

$$\stackrel{1}{\xleftarrow{refl}} I @ m = I @ m$$

$$\stackrel{refl}{\xleftarrow{refl}} true$$

Inductive Proofs Simple Example: List Append

Definition (List Append ⁽⁰⁾)

Step Case.

$$k @ (I @ m) = (k @ I) @ m$$

$$\vdash (h \# k) @ (I @ m) = ((h \# k) @ I) @ m$$

$$\stackrel{2}{\iff} h \# (k @ (I @ m)) = (h \# (k @ I)) @ m$$

$$\stackrel{2}{\iff} h \# (k @ (I @ m)) = h \# ((k @ I) @ m)$$

$$\stackrel{repl}{\iff} h = h \land k @ (I @ m) = (k @ I) @ m$$

$$\stackrel{H}{\iff} h = h$$

$$\stackrel{refl}{\iff} true$$

Inductive Proofs Simple Example 2: Idempotence of Union

Definition (Partition Union @@)

- Empty @@ q = q
- Filled @@ q = Filled
- p @@ Empty = p
- p @@ Filled = Filled
- (Branch |1 r1) @@ (Branch |2 r2) = Branch (|1 @@ |2) (r1 @@ r2)

Inductive Proofs Simple Example 2: Idempotence of Union

Definition (Partition Union @@)

- Empty @@ q = q
- Filled @@ q = Filled
- p @@ Empty = p
- p @@ Filled = Filled
- (Branch |1 r1) @@ (Branch |2 r2) = Branch (|1 @@ |2) (r1 @@ r2)

Theorem (Idempotence of union)

∀*p*. *p* @@ *p* = *p*

Inductive Proofs Simple Example 2: Idempotence of Union

Definition (Partition Union @@)

- Empty @@ q = q
- Filled @@ q = Filled
- (Branch |1 r1) @@ (Branch |2 r2) = Branch (|1 @@ |2) (r1 @@ r2)

Base Case 1.

$$\vdash Empty @@ Empty = Empty \\ \stackrel{3}{\iff} Empty = Empty \\ \stackrel{refl}{\iff} true$$

Inductive Proofs Simple Example 2: Idempotence of Union

Definition (Partition Union @@)

- Empty @@ q = q
- Filled @@ q = Filled
- (Branch /1 r1) @@ (Branch /2 r2) = Branch (/1 @@ /2) (r1 @@ r2)

Base Case 2.

 $\vdash \text{ Filled } @@ \text{ Filled } = \text{Filled} \\ \stackrel{4}{\longleftrightarrow} \text{ Filled } = \text{Filled} \\ \stackrel{\text{refl}}{\longleftrightarrow} \text{ true}$

Inductive Proofs Simple Example 2: Idempotence of union

Definition (Partition Union @@)

- Empty @@ q = q
- Filled @@ q = Filled
- (Branch |1 r1) @@ (Branch |2 r2) = Branch (|1 @@ |2) (r1 @@ r2)

Step Case.

$$p1 @@ p1 = p1 \land p2 @@ p2 = p2$$

$$\vdash (Branch p1 p2) @@ (Branch p1 p2) = Branch p1 p2$$

$$\stackrel{7}{\iff} Branch (p1 @@ p1) (p2 @@ p2) = Branch p1 p2$$

$$\stackrel{IH}{\iff} Branch p1 p2 = Branch p1 p2$$

$$\stackrel{refl}{\iff} true$$

Automation

- Is rewriting and fertilization enough?
- No! Because:
 - Incompleteness (Gödel)
 - Undecidability of Halting Problem (Turing)
 - Failure of Cut Elimination (Kreisel)

Cut Rule		
	$\frac{\textit{A}, {\Gamma}\vdash \Delta}{{\Gamma}\vdash \Delta}$	

Inductive Proofs Blocking Example

Definition (List Reverse rev)

[]

Theorem (Reverse of reverse)

 $\forall I.rev (rev I) = I$

Base Case.

$$\vdash rev (rev []) = []$$

$$\stackrel{\$}{\iff} rev [] = []$$

$$\stackrel{\$}{\iff} [] = []$$

$$\stackrel{ref}{\implies} true$$

Inductive Proofs Blocking Example

Definition (List Reverse rev)

Theorem (Reverse of reverse)

 $\forall I.rev (rev I) = I$

Step Case.

$$\begin{array}{l} \operatorname{rev} (\operatorname{rev} I) = I \\ \vdash \operatorname{rev} (\operatorname{rev} (h \# I)) = h \# I \\ \stackrel{9}{\iff} \operatorname{rev} (\operatorname{rev} I @(h \# [])) = h \# I \\ \operatorname{Now what}?? \end{array}$$

Inductive Proofs Blocking Example

Step Case.

$$\begin{array}{l} \operatorname{rev} (\operatorname{rev} I) = I \\ \vdash \operatorname{rev} (\operatorname{rev} (h \# I)) = h \# I \\ \stackrel{9}{\iff} \operatorname{rev} (\operatorname{rev} I @(h \# [])) = h \# I \\ \operatorname{Now} what?? \end{array}$$

Example (Possible Solutions)

- Lemma: $\forall I. \forall m. rev (I @ m) = rev m @ rev I$
- Weak fertilization: $\stackrel{IH}{\longleftrightarrow}$ rev (rev I @(h # [])) = h # (rev (rev I))
- Generalisation: rev (l' @ (h # [])) = h # (rev l')

Petros Papapanagiotou Inductive Theorem Proving

Automating Inductive Proofs

- Over 20 years of work by Boyer, Moore, Kaufmann
- The "Waterfall Model"
- Evolved into ACL2
- Used in industrial applications:
 - Hardware verification: AMD Processors
 - Software verification: Java bytecode
- Implemented for HOL88/90 by Boulton
- Reconstructed for HOL Light by Papapanagiotou

Waterfall of heuristics

- Pour clauses recursively from the top.
- Apply heuristics as the clauses trickle down.
 - Some get proven (evaporate).
 - Some get simplified or split \Rightarrow Pour again from the top
 - Some reach the bottom.
- Sorm a pool of unproven clauses.
- Apply induction and pour base case and step case from the top.

General Waterfall Model Demo

The Waterfall Model Waterfall of heuristics

General Waterfall Model Demo

Waterfall of heuristics

Petros Papapanagiotou

Inductive Theorem Proving

Heuristics (HOL Light version)

- Tautology heuristic
- Clausal form heuristic
- 3 Setify heuristic ($p \lor p \Leftrightarrow p$)
- **9** Substitution heuristic (inequalities: $x \neq a \lor P x \Leftrightarrow P a$)
- Equality heuristic (fertilization)
- Simplification heuristic (rewriting)
- Generalization heuristic
- Irrelevance heuristic

Demo

```
SUC m = m + SUC 0
Doing induction on 'm' for: SUC m = m + SUC 0
SUC 0 = 0 + SUC 0
-> HL Simplify Heuristic
Proven: | - SUC 0 = 0 + SUC 0
                                                      let rec waterfall heuristics tmi =
                                                         let rec flow on down rest of heuristics tmi =
    if (is F (fst tmi)) then (failwith "cannot prove")
SUC n = n + SUC 0 ==> SUC (SUC n) = SUC n + SUC 0_{lise try}^{(lise if (rest of heuristics = ()) then (Clause tmi)}
-> Clausal Form Heuristic
                                                                    in if (tms = []) then (Clause proved (f []))
\sim (SUC n = n + SUC 0) \/ SUC (SUC n) = SUC n + SUC 0
                                                                       else if ((tl tms) = []) then
                                                                            (Clause split ([waterfall heuristics (hd tms)],f))
-> HL Simplify Heuristic
                                                                        else Clause split
\sim (SUC n = n + SUC 0) \/ SUC n = n + SUC 0
                                                                              ((dec print depth o
-> Tautology Heuristic
                                                                                map (waterfall heuristics o proof print newline) o
Proven: |- \sim (SUC n = n + SUC 0) \setminus / SUC n = n + SUC 0
                                                                                inc print depth) tms,
                                                                 )with Failure s -> (if (s = "cannot prove")
                                                                      then failwith s
val it : thm = |- SUC m = m + SUC 0
                                                                      else (flow on down (tl rest of heuristics) tmi)
                                                         in flow on down heuristics tmi;;
```

Conclusion

- Inductive Proofs
 - Appear very often in formal verification and automated reasoning tasks.
 - Are hard to automate.
- So far
 - Advanced automated provers (ACL2, IsaPlanner, etc)
 - Advanced techniques (Rippling, Decision Procedures, etc)
 - Still require fair amount of user interaction.
- Still work on
 - More advanced heuristics
 - Better generalization
 - Counterexample checking
 - Productive use of failure (Isaplanner)
 - More decision procedures
 - ...
 - Termination heuristics

Questions?

Petros Papapanagiotou Inductive Theorem Proving