Automated Reasoning

Petros Papapanagiotou

October 4, 2013

1/26



Extra Lecture

Program verification using Hoare Logic!
Petros Papapanagiotou

!Partially adapted from Mike Gordon's slides on Hoare Logic:

http://www.cl.cam.ac.uk/ mjcg/HoareLogic.html
2/26


http://www.cl.cam.ac.uk/~mjcg/HoareLogic.html

Formal Methods

» Formal Specification: Use mathematical notation to give a
precise description of what a program should do.

» Formal Verification: Use logical rules to mathematically prove
that a program satisfies a formal specification.

» Not a panacea.
» Formally verified programs may still not work!
» Must be combined with testing.

3/26



Modern use

» Some use cases:

» Safety-critical systems (e.g. medical equipment software,
nuclear reactor controllers)

» Core system components (e.g. device drivers)
» Security (eg. ATM software, cryptographic algorithms)
» Hardware verification (e.g. processors)

» Some tools:

» Design by Contract (DBC) and the Eiffel programming
language.

Java assert.

DBC for Java with JML and ESC/Java 2.

Why tool: Krakatoa and Jessie (Java and C).

Why3 tool: WhyML (Correct-by-construction OCaml
programs) using external provers (including Isabelle/HOL).

vV vyVvVYyy

4/26



Floyd-Hoare Logic and Partial Correctness Specification

» By Charles Antony (“Tony”) Richard Hoare with original ideas
from Robert Floyd - 1969

» Specification: Given a state that satisfies preconditions P,
executing a program C (and assuming it terminates) results in
a state that satisfies postconditions Q.

» “Hoare triple”:
{P} C{Q}

e.g.
(X=1}X:=X+1{X=2}

» Partial correctness + termination = Total correctness

5/26



A simple “while” programming language

Sequence: a ; b

Skip (do nothing): SKIP

Variable assignment: X :=0
Conditional: IF cond THEN a ELSE b FI
Loop: WHILE cond DO c OD

vV V. v Vv Y

6/26



Formal specification can be tricky!

» Trivial specifications:
> {P} C{T}
> {F} C{Q}

» Incorrect specifications:
» Specification for the maximum of two variables:

{T} C{Y = max(X,Y)}
C could be:
IF X >=Y THEN Y := X ELSE SKIP FI

v

v

But C could also be:
IF X >=Y THEN X := Y ELSE SKIP FI

» Or even:
Y =X

\4

What we really wanted is:
{X=xAY =y} C{Y =max(x,y)}

Variables x and y are “auxiliary’ (ie. not program variables).

v

7/26



» A deductive proof system for Hoare triples {P} C {Q}.
» Can be used to extract verification conditions (VCs) from
{P} C{Q}.
» Conditions P and @ are described using FOL.
» VCs = What needs to be proven so that {P} C {Q} is true?

» Standard FOL theorem proving can then be used to prove the
verification conditions.

» VCs are presented as proof obligations or simply proof
subgoals.

8/26



Hoare Logic Rules

» Introduced similarly to FOL inference rules.
» One for each programming language construct:

Assignment
Sequence
Skip
Conditional
While

» Rules of consequence:

» Precondition strengthening
» Postcondition weakening

v vy VvYyy

v

9/26



Assignment Axiom

{QIE/V]} V:=E{Q}

» People feel it is backwards!

» Example:
{X+1=n+4+1}X:=X+1{X=n+1}
» How can we get the following?

{X=nX=X+1{X=n+1}

10/26



Precondition Strenghtening

P— P {P}C{Q}
{P} C{Q}

» Replace a precondition with a stronger condition.
» Example:

X=n—X+1=n+1 {X+1=n+1}X:=X+1{X=n+1}
{X=n}X=X+1{X=n+1}

11/26



Postcondition Weakening

{Prc{Q} @—Q
{P} C{Q}

» Replace a postcondition with a weaker condition.
» Example:
{X=n}Xx=X4+1{X=n+1} X=n+1—X>n
{X=n}X:=X+1{X>n}

12/26



Sequencing Rule

{Pr G {QF {Q}G{R}
(P} Gii G{R}

» Example (Swap X Y):

{X=xAY=y}s:=x{S=xAY =y} (1)
{S=xAY=y}X=Y{S=xAX=y} (2
{S=xAX=y}Y:=S{Y=xAX=y} 3
(1) )
{X=xAY=y}s:=X;X=Y{S=xAX=y} 3)

{X=xAY=y}s:=X,;X:=Y,;, Y:=S{Y=xAX=y} (4)



(P} SKIP {P}

14/26



Conditional Rule

{PAS} GG {Q} {PA-S} G{Q}
{P} IF S THEN C; ELSE G, FI {Q}

» Example (Max X Y):

TAX>Y — X=max(X,Y) {X:=max(X,Y)} MAX := X {MAX = max(X,Y)}
{TAX > Y} MAX := X {MAX = max(X,Y)}

®)

TA(X>Y)— Y=max(X,Y) {Y :=max(X,Y)}MAX :=Y {MAX = max(X,Y)}
[TA=(X > Y)} MAX := Y {MAX = max(X, Y)}

(6)

(5) (6)
{T} IF X > Y THEN MAX := X ELSE MAX := Y FI {MAX = max(X, Y)}
(7)

15/26



Conditional Rule - VCs

{PAS} G {Q} {PA-S} G{Q}
{P} IF S THEN C; ELSE G, FI {Q}

» Example (Max X Y):
{T} IF X > Y THEN MAX := X ELSE MAX := Y FI {MAX = max(X, Y)}

v

We need to prove these:
TAX>Y — X =max(X,Y)

TA=(X>Y)— Y =max(X,Y)
FOL Verification Conditions! (VCs)
An automated reasoning tool (e.g. the vcg tactic in Isabelle)
can apply Hoare Logic rules and generate VCs automatically.
We only need to provide proofs for the VCs (proof
obligations).

vy

v

16/26



WHILE Rule

{PAS} C{P}
{P} WHILE S DO C 0D {P A —S}

» P is an invariant for C whenever S holds.

» WHILE rule: If executing C once preserves the truth of P,
then executing C any number of times also preserves the
truth of P.

» If P is an invariant for C when S holds then P is an invariant
of the whole WHILE loop, ie. a loop invariant.

17/26



WHILE Rule

{PAS} C{P}
{P} WHILE S DO C OD {P A —S}

» Example (factorial) - Original specification:

{Y=1ANZ=0}
WHILE Z # X DO
Z =72+ 1;
Y ;=Y x Z
0D

{Y = X1}

18/26



WHILE Rule

{PAS} C{P}
{P} WHILE S DO C OD {P A —S}

» Example (factorial):

{Y=1AZ=0} (P}

WHILE Z # X DO WHILE Z # X DO
Z =72+ 1; ? Z =72+ 1 ;
Y ;=Y x Z ~> Y ;=Y x Z

0D 0D

{Y =X} {PN—-Z # X}

» What is P?

18/26



WHILE Rule - How to find an invariant

{PAS} C {P}
{P} WHILE S DO C 0D {P A S}

» The invariant P should:
» Say what has been done so far together with what remains to
be done.
» Hold at each iteration of the loop.
» Give the desired result when the loop terminates.

19/26



WHILE Rule - Invariant VCs

{PAS} C{P}
{P} WHILE S DO C OD {P A —S}

{Y=1AZ=0}WHILEZ#XD0Z:=2+1; Y:=YxZ0D{Y=X!}
{P}WHILEZ #XD0Z:=2+1; Y:=YXxZO0D{PA-Z+#X}

» Taking the WHILE-rule, precondition strengthening, and
postcondition weakening into consideration, we need to find
an invariant P such that:

» {PNZ#X}YZ:=Z2+1; Y:=YxZ{P}
» Y=1IANZ=0—P
» PA(Z#X)— Y = X!

» VCsl

20/26



WHILE Rule - Loop invariant for factorial

{PAS} C{P}
{P} WHILE SDO C 0D {P A S}

{Y=1AZ=0}WHILEZ#XD0Z:=Z+1; Y:=YxZ0D{Y =X!}
{P}WHILEZ #XD0Z:=Z+1; Y:=YXZOD {PA—-Z#X}

» Invariant: Y = Z!
» Our VCs:

Yx(Z+1)=Z+0)}z2:=241{YxZ=21} {YXZ=2ZJY:=Yxz{Y =2}
{YX(Z+1)=(Z+1)}z2:=2+1; Y:=YxZ{Y =21}

> Therefore: {Y =ZINZ#X}Z2:=Z+1; Y:=YXZ{Y =2}
(since Y =ZINZ#X — Y Xx(Z+1)=(Z+1)})

» Y=1ANZ=0— Y = Z! (since 0! =1)

> Y=ZINA(Z#X)— Y = X! (since °(Z #X) - Z=X)

21/26



WHILE Rule - Complete factorial example

{Y=1ANZ =0}
{vy=2z11

WHILE Z # X DO
{(Y=2ZINZ#X}
{Yx(Z+1)=(Z+ 1)}

(Y xZ=2
(Y =21}
0D

{Y = ZVA—~(Z # X)}
{Y = X1}

22/26



Hoare Logic Rules (it does!)

P—P {P}C{Q} {PIC{Q} @—Q
Py C{Q} {PyC {0}

{Q[E/V]} V:=E {Q} {P} SKIP {P}

{Pt G {Q} {Q} G {R}
{P} Gi; G{R}

{PAS} GG {Q} {PA-S} G{Q}
{P} IF S THEN C; ELSE G, FI {Q}

{PAS} C{P}
{P} WHILE S DO C 0D {P A =S}

23/26



{P} C{Q}

v

Weakest preconditions, strongest postconditions.

v

Meta-theory: Is Hoare logic...

> ... sound? - Yes! Based on programming language semantics
(but what about more complex languages?)

» ... decidable? - No! {T} C {F} is the halting problem!

> ... complete? - Relatively. Only for simple languages.

Automatic Verification Condition Generation (VCG).

>

» Automatic generation/inference of loop invariants!

» More complex languages. e.g. Pointers = Separation logic
>

Functional programming (recursion = induction).

24 /26



» Formal Verification: Use logical rules to mathematically prove
that a program satisfies a formal specification.
Specification using Hoare triples {P} C {Q}

» Preconditions P

» Program C

» Postconditions Q

v

v

Hoare Logic: A deductive proof system for Hoare triples.
Logical Rules:
» One for each program construct.

» Precondition strenghtening.
» Postcondition weakening.

v

v

Automated generation of Verification Conditions (VCs).
Only one problem: Loop invariants!

» Properties that hold during while loops.
» Loop invariant generation is generally undecidable.

v

v

Partial correctness + termination = Total correctness

25/26



Recommended reading

» Background Reading on Hoare Logic, Mike Gordon, 2012,
http://www.cl.cam.ac.uk/ " mjcg/Teaching/2011/
Hoare/Notes/Notes.pdf

» Huth & Ryan, Sections 4.1-4.3 (pp. 256-292).

26 /26


http://www.cl.cam.ac.uk/~mjcg/Teaching/2011/Hoare/Notes/Notes.pdf
http://www.cl.cam.ac.uk/~mjcg/Teaching/2011/Hoare/Notes/Notes.pdf

