
Automated Reasoning

Petros Papapanagiotou

October 4, 2013

1 / 26



Extra Lecture

Program verification using Hoare Logic1

Petros Papapanagiotou

1Partially adapted from Mike Gordon’s slides on Hoare Logic:
http://www.cl.cam.ac.uk/~mjcg/HoareLogic.html

2 / 26

http://www.cl.cam.ac.uk/~mjcg/HoareLogic.html


Formal Methods

I Formal Specification: Use mathematical notation to give a
precise description of what a program should do.

I Formal Verification: Use logical rules to mathematically prove
that a program satisfies a formal specification.

I Not a panacea.

I Formally verified programs may still not work!

I Must be combined with testing.

3 / 26



Modern use

I Some use cases:
I Safety-critical systems (e.g. medical equipment software,

nuclear reactor controllers)
I Core system components (e.g. device drivers)
I Security (eg. ATM software, cryptographic algorithms)
I Hardware verification (e.g. processors)

I Some tools:
I Design by Contract (DBC) and the Eiffel programming

language.
I Java assert.
I DBC for Java with JML and ESC/Java 2.
I Why tool: Krakatoa and Jessie (Java and C).
I Why3 tool: WhyML (Correct-by-construction OCaml

programs) using external provers (including Isabelle/HOL).

4 / 26



Floyd-Hoare Logic and Partial Correctness Specification

I By Charles Antony (“Tony”) Richard Hoare with original ideas
from Robert Floyd - 1969

I Specification: Given a state that satisfies preconditions P,
executing a program C (and assuming it terminates) results in
a state that satisfies postconditions Q.

I “Hoare triple”:

{P} C {Q}

e.g.:
{X = 1} X := X + 1 {X = 2}

I Partial correctness + termination = Total correctness

5 / 26



A simple “while” programming language

I Sequence: a ; b

I Skip (do nothing): SKIP

I Variable assignment: X := 0

I Conditional: IF cond THEN a ELSE b FI

I Loop: WHILE cond DO c OD

6 / 26



Formal specification can be tricky!

I Trivial specifications:
I {P} C {T}
I {F} C {Q}

I Incorrect specifications:
I Specification for the maximum of two variables:

{T} C {Y = max(X , Y )}
I C could be:

IF X >= Y THEN Y := X ELSE SKIP FI

I But C could also be:

IF X >= Y THEN X := Y ELSE SKIP FI

I Or even:
Y := X

I What we really wanted is:

{X = x ∧ Y = y} C {Y = max(x , y)}
I Variables x and y are “auxiliary” (ie. not program variables).

7 / 26



Hoare Logic

I A deductive proof system for Hoare triples {P} C {Q}.
I Can be used to extract verification conditions (VCs) from
{P} C {Q}.

I Conditions P and Q are described using FOL.
I VCs = What needs to be proven so that {P} C {Q} is true?

I Standard FOL theorem proving can then be used to prove the
verification conditions.

I VCs are presented as proof obligations or simply proof
subgoals.

8 / 26



Hoare Logic Rules

I Introduced similarly to FOL inference rules.
I One for each programming language construct:

I Assignment
I Sequence
I Skip
I Conditional
I While

I Rules of consequence:
I Precondition strengthening
I Postcondition weakening

9 / 26



Assignment Axiom

{Q[E/V ]} V := E {Q}

I People feel it is backwards!

I Example:

{X + 1 = n + 1} X := X + 1 {X = n + 1}

I How can we get the following?

{X = n} X := X + 1 {X = n + 1}

10 / 26



Precondition Strenghtening

P −→ P ′ {P ′} C {Q}
{P} C {Q}

I Replace a precondition with a stronger condition.
I Example:

X = n −→ X + 1 = n + 1 {X + 1 = n + 1} X := X + 1 {X = n + 1}
{X = n} X := X + 1 {X = n + 1}

11 / 26



Postcondition Weakening

{P} C {Q ′} Q ′ −→ Q

{P} C {Q}

I Replace a postcondition with a weaker condition.
I Example:

{X = n} X := X + 1 {X = n + 1} X = n + 1 −→ X > n

{X = n} X := X + 1 {X > n}

12 / 26



Sequencing Rule

{P} C1 {Q} {Q} C2 {R}
{P} C1 ; C2 {R}

I Example (Swap X Y):

{X = x ∧ Y = y} S := X {S = x ∧ Y = y} (1)

{S = x ∧ Y = y} X := Y {S = x ∧ X = y} (2)

{S = x ∧ X = y} Y := S {Y = x ∧ X = y} (3)

(1) (2)

{X = x ∧ Y = y} S := X ; X := Y {S = x ∧ X = y} (3)

{X = x ∧ Y = y} S := X ; X := Y ; Y := S {Y = x ∧ X = y} (4)

13 / 26



Skip Axiom

{P} SKIP {P}

14 / 26



Conditional Rule

{P ∧ S} C1 {Q} {P ∧ ¬S} C2 {Q}
{P} IF S THEN C1 ELSE C2 FI {Q}

I Example (Max X Y):

T ∧ X ≥ Y −→ X = max(X , Y ) {X := max(X , Y )} MAX := X {MAX = max(X , Y )}
{T ∧ X ≥ Y } MAX := X {MAX = max(X , Y )}

(5)

T ∧ ¬(X ≥ Y ) −→ Y = max(X , Y ) {Y := max(X , Y )} MAX := Y {MAX = max(X , Y )}
{T ∧ ¬(X ≥ Y )} MAX := Y {MAX = max(X , Y )}

(6)

(5) (6)

{T} IF X ≥ Y THEN MAX := X ELSE MAX := Y FI {MAX = max(X , Y )}
(7)

15 / 26



Conditional Rule - VCs

{P ∧ S} C1 {Q} {P ∧ ¬S} C2 {Q}
{P} IF S THEN C1 ELSE C2 FI {Q}

I Example (Max X Y):

{T} IF X ≥ Y THEN MAX := X ELSE MAX := Y FI {MAX = max(X , Y )}
I We need to prove these:

T ∧ X ≥ Y −→ X = max(X , Y )

T ∧ ¬(X ≥ Y ) −→ Y = max(X , Y )

I FOL Verification Conditions! (VCs)
I An automated reasoning tool (e.g. the vcg tactic in Isabelle)

can apply Hoare Logic rules and generate VCs automatically.
I We only need to provide proofs for the VCs (proof

obligations).

16 / 26



WHILE Rule

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

I P is an invariant for C whenever S holds.

I WHILE rule: If executing C once preserves the truth of P,
then executing C any number of times also preserves the
truth of P.

I If P is an invariant for C when S holds then P is an invariant
of the whole WHILE loop, ie. a loop invariant.

17 / 26



WHILE Rule

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

I Example (factorial) - Original specification:

{Y = 1 ∧ Z = 0}
WHILE Z 6= X DO

Z := Z + 1 ;
Y := Y × Z

OD
{Y = X !}

?

 

{P}
WHILE Z 6= X DO

Z := Z + 1 ;
Y := Y × Z

OD
{P ∧ ¬Z 6= X}

I What is P?

18 / 26



WHILE Rule

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

I Example (factorial):

{Y = 1 ∧ Z = 0}
WHILE Z 6= X DO

Z := Z + 1 ;
Y := Y × Z

OD
{Y = X !}

?

 

{P}
WHILE Z 6= X DO

Z := Z + 1 ;
Y := Y × Z

OD
{P ∧ ¬Z 6= X}

I What is P?
18 / 26



WHILE Rule - How to find an invariant

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

I The invariant P should:
I Say what has been done so far together with what remains to

be done.
I Hold at each iteration of the loop.
I Give the desired result when the loop terminates.

19 / 26



WHILE Rule - Invariant VCs

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

{Y = 1 ∧ Z = 0} WHILE Z 6= X DO Z := Z + 1 ; Y := Y× Z OD {Y = X!}
{P} WHILE Z 6= X DO Z := Z + 1 ; Y := Y× Z OD {P ∧ ¬Z 6= X}

I Taking the WHILE-rule, precondition strengthening, and
postcondition weakening into consideration, we need to find
an invariant P such that:

I {P ∧ Z 6= X} Z := Z + 1 ; Y := Y× Z {P}
I Y = 1 ∧ Z = 0 −→ P
I P ∧ ¬(Z 6= X ) −→ Y = X !

I VCs!
20 / 26



WHILE Rule - Loop invariant for factorial

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

{Y = 1 ∧ Z = 0} WHILE Z 6= X DO Z := Z + 1 ; Y := Y× Z OD {Y = X!}
{P} WHILE Z 6= X DO Z := Z + 1 ; Y := Y× Z OD {P ∧ ¬Z 6= X}

I Invariant: Y = Z!
I Our VCs:

{Y × (Z + 1) = (Z + 1)!} Z := Z + 1 {Y × Z = Z !} {Y × Z = Z !} Y := Y× Z {Y = Z !}
{Y × (Z + 1) = (Z + 1)!} Z := Z + 1 ; Y := Y× Z {Y = Z !}

I Therefore: {Y = Z ! ∧ Z 6= X} Z := Z + 1 ; Y := Y× Z {Y = Z !}
(since Y = Z ! ∧ Z 6= X −→ Y × (Z + 1) = (Z + 1)!)

I Y = 1 ∧ Z = 0 −→ Y = Z ! (since 0! = 1)
I Y = Z ! ∧ ¬(Z 6= X ) −→ Y = X ! (since ¬(Z 6= X )↔ Z = X )

21 / 26



WHILE Rule - Complete factorial example

{Y = 1 ∧ Z = 0}
{Y = Z !}

WHILE Z 6= X DO
{Y = Z ! ∧ Z 6= X}

{Y × (Z + 1) = (Z + 1)!}
Z := Z + 1 ;

{Y × Z = Z !}
Y := Y × Z

{Y = Z !}
OD

{Y = Z ! ∧ ¬(Z 6= X )}
{Y = X!}

22 / 26



Hoare Logic Rules (it does!)

P −→ P ′ {P ′} C {Q}
{P} C {Q}

{P} C {Q ′} Q ′ −→ Q

{P} C {Q}

{Q[E/V ]} V := E {Q} {P} SKIP {P}

{P} C1 {Q} {Q} C2 {R}
{P} C1 ; C2 {R}

{P ∧ S} C1 {Q} {P ∧ ¬S} C2 {Q}
{P} IF S THEN C1 ELSE C2 FI {Q}

{P ∧ S} C {P}
{P} WHILE S DO C OD {P ∧ ¬S}

23 / 26



Other topics

{P} C {Q}

I Weakest preconditions, strongest postconditions.
I Meta-theory: Is Hoare logic...

I ... sound? - Yes! Based on programming language semantics
(but what about more complex languages?)

I ... decidable? - No! {T} C {F} is the halting problem!
I ... complete? - Relatively. Only for simple languages.

I Automatic Verification Condition Generation (VCG).

I Automatic generation/inference of loop invariants!

I More complex languages. e.g. Pointers = Separation logic

I Functional programming (recursion = induction).

24 / 26



Summary

I Formal Verification: Use logical rules to mathematically prove
that a program satisfies a formal specification.

I Specification using Hoare triples {P} C {Q}
I Preconditions P
I Program C
I Postconditions Q

I Hoare Logic: A deductive proof system for Hoare triples.
I Logical Rules:

I One for each program construct.
I Precondition strenghtening.
I Postcondition weakening.

I Automated generation of Verification Conditions (VCs).
I Only one problem: Loop invariants!

I Properties that hold during while loops.
I Loop invariant generation is generally undecidable.

I Partial correctness + termination = Total correctness

25 / 26



Recommended reading

I Background Reading on Hoare Logic, Mike Gordon, 2012,
http://www.cl.cam.ac.uk/~mjcg/Teaching/2011/
Hoare/Notes/Notes.pdf

I Huth & Ryan, Sections 4.1-4.3 (pp. 256-292).

26 / 26

http://www.cl.cam.ac.uk/~mjcg/Teaching/2011/Hoare/Notes/Notes.pdf
http://www.cl.cam.ac.uk/~mjcg/Teaching/2011/Hoare/Notes/Notes.pdf

