
Petros Papapanagiotou
pe.p@ed.ac.uk
7 October 2013

Software verification using Hoare
logic in Isabelle

Automated Reasoning – Coursework Assignment 1

Breakdown

 Part 1 : Natural Deduction (40 marks)
 14 lemmas to prove

 Part 2 : Hoare Logic (60 marks)
 Part 2a : Verify 6 algorithms (15 marks)
 Part 2b : Verify the MinSum algorithm (45 marks)

2 / 22

Isabelle / HOL
 A modern proof assistant.
 Written in PolyML.
 Supports multiple interfaces:
 ProofGeneral – Developed in UoE, supported on DICE.
 jEdit

 Multiple tools:
 Extensive libraries of theories and lemmas.
 Automated proof procedures.
 Various helpful tools (eg. counterexample checker)

3 / 22

Isabelle / HOL - Resources

 Getting started guide (use this to run Isabelle under DICE):
http://www.inf.ed.ac.uk/teaching/courses/ar/isabelle/isabelle-startup.pdf

 Tutorial / Documentation:
http://www.cl.cam.ac.uk/research/hvg/Isabelle/documentation.html

 Cheat Sheet:
 http://www.inf.ed.ac.uk/teaching/courses/ar/FormalCheatSheet.pdf

4 / 22

http://www.inf.ed.ac.uk/teaching/courses/ar/isabelle/isabelle-startup.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/documentation.html
http://www.inf.ed.ac.uk/teaching/courses/ar/FormalCheatSheet.pdf

Isabelle / HOL - Syntax
 Comments:

text {* COMMENTS *}
 Symbols:

 To view a theorem:
thm FOO

\<and> /\ ∧
\<or> \/ ∨

\<forall> ALL ∀
\<exists> EX ∃

\<longrightarrow> --> →

\<Longrightarrow> ==> ⟹

5 / 22

Isabelle HOL – Tactics + rules
 Basic tactics:

 Basic natural deduction rules:

rule rule_tac introduction (backward)

erule erule_tac elimination (forward + backward)

drule drule_tac destruction (forward)

frule frule_tac forward

conjI conjE conjunct1 conjunct2

disjI1 disjI2 disjE

impI impE mp

iffI iffD1 iffD1 iffE

notI notE

allI allE exI exE

excluded-middle ccontr
6 / 22

Isabelle / HOL – Tactics usage
 Simple application:

apply (rule exI)

 Instantiation:
apply (rule_tac x=A in exI)

 Multiple instantiations:

apply (drule_tac P=P and Q=Q in disjI1)

7 / 22

Other basic commands and tactics

apply (assumption) Prove by matching the goal to an assumption.

prefer Prioritize a subgoal.

defer Postpone a subgoal.

done Finish a proof with no subgoals.

oops / sorry Postpone a proof. (that doesn’t mean you proved it!)

8 / 22

Assignment Part 1
 Practice in natural deduction proofs in Isabelle.

 Using only basic rules and tactics, prove 14 lemmas.

 Including one of DeMorgan’s laws and Russel’s “barber” paradox.

 Lemmas marked individually, total 40%.

9 / 22

Isabelle / HOL – Advanced tactics
 You are not allowed to use these in Part 1!

case_tac P Case split over possible values of P (not necessarily
boolean).

clarify Clarify the subgoal using simple rules.

simp
simp add: FOO BAR
simp only: FOO BAR
simp del: FOO BAR

Simplify goal + assumptions using core rules.
- Add theorems FOO and BAR.

- Use only theorems FOO and BAR (not core rules).
- Exclude FOO and BAR from the core rules.

auto
auto simp add: FOO BAR

Try to prove all subgoals automatically.
- Also use the simplifier adding rules FOO and BAR.

blast / force Other automated procedures.

oops / sorry Postpone a proof. (that doesn’t mean you proved it!)

10 / 22

Isabelle / HOL – Hoare Logic
 We can use Isabelle’s Hoare Logic library to reason about a

simple WHILE programming language:

VARS x y z Local variables.

p ; q Sequence.

SKIP Do nothing.

X := 0 Assignment.

IF cond
THEN p
ELSE q
FI

Conditional.

WHILE cond
INV { invariant }

DO p
OD

While loop.

Invariant must be explicit!

11 / 22

Isabelle / HOL – Formal Specification
 Using this programming language, we can express Hoare triples

in Isabelle.
 Example (from Hoare Logic lecture):

lemma Fact: "VARS (Y::nat) Z
 {True}
 Y := 1;
 Z := 0;
 WHILE Z ≠ X
 INV { Y = fact Z }
 DO
 Z := Z + 1;
 Y := Y * Z
 OD
 { Y = fact X }"

12 / 22

Isabelle / HOL – VCs
 Isabelle can automatically extract VCs with the Verification

Condition Generation tactic:

apply vcg
 Result :

* Remember these from the Hoare Logic lecture?

proof (prove): step 1

goal (3 subgoals):

 1. ∧ Y Z. True ⟹ 1 = fact 0

 2. ∧ Y Z. Y = fact Z ∧ Z ≠ X ⟹ Y * (Z + 1) = fact (Z + 1)

 3. ∧ Y Z. Y = fact Z ∧ ¬ Z ≠ X ⟹ Y = fact X

13 / 22

Isabelle HOL - VCs

 We can use Isabelle tactics, rules, and lemmas to prove VCs.
 In this example, simp “knows enough” about fact to

solve all subgoals, but this will not always be the case.
 Alternative: vcg_simp (vcg + simp)
 Correctness of the Fact algorithm is now verified based on

the definition and properties of fact in Isabelle!

proof (prove): step 1

goal (3 subgoals):

 1. ∧ Y Z. True ⟹ 1 = fact 0

 2. ∧ Y Z. Y = fact Z ∧ Z ≠ X ⟹ Y * (Z + 1) = fact (Z + 1)

 3. ∧ Y Z. Y = fact Z ∧ ¬ Z ≠ X ⟹ Y = fact X

14 / 22

Assignment Part 2a
 Verify 6 simple algorithms:

 Use any rule/lemma from the available theories (you may not
import more) and any of the tactics described here or in the
Cheat Sheet (including simp and auto).

 Introduce the appropriate loop invariant and postcondition
where necessary:
 Replace the Inv variable (not the INV keyword) with your

invariant.
 Replace the Postcondition variable with your postcondition.

 Algorithms marked individually, total 15%.
15

Min Multi1 DownFact

Copy Multi2 Div

/ 22

Assignment Part 2b
 Verify the minimum section sum algorithm MinSum.

Si,j = A[i] + A[i+1] + … + A[j]
eg: A = [1,2,3,4] S1,2 = 2 + 3 = 5

 Two specifications:
 S1: The sum s is less than or equal the sum of any section of the array.

 S2: There exists a section of the array that has sum s.

16 / 22

Assignment Part 2b
 Verify the minimum section sum algorithm MinSum.

fun sectsum :: "int list ⇒ nat ⇒ nat ⇒ int" where
"sectsum l i j = listsum (take (j-i+1) (drop i l))“

eg: sectsum [1,2,3,4] 1 2 =

listsum (take (2-1+1) (drop 1 [1,2,3,4])) =
listsum (take 2 [2,3,4]) =

listsum [2,3] =
2 + 3 = 5

 Two specifications:
 S1: ∀i j. 0≤i ∧ i≤j ∧ j<length A →

s ≤ sectsum A i j
 S2: ∃i j. 0≤i ∧ i≤j ∧ j<length A ∧

s = sectsum A i j
17 / 22

Assignment Part 2b
 S1: ∀i j. 0≤i ∧ i≤j ∧ j<length A →

s ≤ sectsum A i j
 Proof:

Huth & Ryan, Section 4.3.3 (pp. 287-292)
 Introduces a loop invariant with 2 parts. These are already defined as

functions Inv1 and Inv2. Use simp with Inv1.simps and
Inv2.simps.

 Requires proof of Lemma 4.20 which has 2 parts:
lemma4_20a and lemma4_20b

 Prove both parts of Lemma 4.20 and use them to verify S1 by

proving lemma MinSum. (25%)

18 / 22

Assignment Part 2b
 S2: ∃i j. 0≤i ∧ i≤j ∧ j<length A ∧

s = sectsum A i j

 Introduce the appropriate invariant.
 Develop your own proof from scratch.

 Verify S2 by proving lemma MinSum2 (20%).

19 / 22

 Lecture 6 – H&R Secs 4.1-4.3

 Isabelle links
 Drop-in lab: AT 5.05 (West Lab), Thursdays 2pm – 3pm

 Discussion Forum & Mailing list
 Me: pe.p@ed.ac.uk

 20 / 22

https://www.forums.ed.ac.uk/viewforum.php?f=602
mailto:ar-students@inf.ed.ac.uk?subject=Question about Automated Reasoning Assignment 1
mailto:pe.p@ed.ac.uk?subject=Question about Automated Reasoning Assignment 1

 Don’t change imports and definitions!

 Plan your proofs on paper before you try them on Isabelle!
 Prove as many extra lemmas as you need!
 Write comments (especially for part 2b)!

 If you cannot prove something, take it as far as you can,
write comments, and use “sorry”!

 Your matriculation number in the file!
 Start early!
 No plagiarism!

21 / 22

22

 Don’t change imports and definitions!

 Plan your proofs on paper before you try them on Isabelle!
 Prove as many extra lemmas as you want!
 Write comments (especially part 2b)!

 If you cannot prove something, take it as far as you can,
write comments, and use “sorry”!

Deadline:
Monday, 28 Oct 2013, 14:00

	Software verification using Hoare logic in Isabelle
	Breakdown
	Isabelle / HOL
	Isabelle / HOL - Resources
	Isabelle / HOL - Syntax
	Isabelle HOL – Tactics + rules
	Isabelle / HOL – Tactics usage
	Other basic commands and tactics
	Assignment Part 1
	Isabelle / HOL – Advanced tactics
	Isabelle / HOL – Hoare Logic
	Isabelle / HOL – Formal Specification
	Isabelle / HOL – VCs
	Isabelle HOL - VCs
	Assignment Part 2a
	Assignment Part 2b
	Assignment Part 2b
	Assignment Part 2b
	Assignment Part 2b
	Slide Number 20
	Slide Number 21
	Slide Number 22

