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Formalising Mathematics

Why formalise?

I Because some proofs are too hard to verify by inspection
(Kepler conjecture, Four-Colour Theorem, ABC conjecture)

I We need to contribute groundwork for such projects.

I To investigate new representations.

I To investigate ways to organise mathematics.

I To add case-studies, pushing our theorem provers.

I To investigate new automation for new domains.

I For historical insight into pre 20th/21st century mathematics.
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The Foundations of Geometry

Euclid’s Elements

I Earliest extant text on axiomatic geometry.

I “possibly the most influential mathematical text ever written”

I A system of ruler and compass constructions.

But, enables
number theory, algebra, the theory of proportion, solid
geometry and integration proofs to compute areas and
volumes.
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Euclid’s Axioms

http://aleph0.clarku.edu/~djoyce/java/elements/
elements.html

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any centre and radius.

4. That all right angles are equal to each other.

5. That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side
on which are the angles less than the two right angles.
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Axiomatic Foundations of Geometry

Hilbert’s Foundations of Geometry

I “most influential book on geometry in a hundred years”

I 10 German editions. 2 English translations (last 1971).

I Truly formal: “Beer mugs, tables and chairs”.

I Now 22 axioms covering incidence of points of lines, ordering
of points on a line, segments and angles defined as point pairs
and intersecting lines and their congruence, a parallel axiom,
the Archimedean axiom and a completeness axiom.
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Formalisation and Machine-Verification

In reviews:

I “Theoretically, at least, the deductions could be made without
any reference to their content by the use of the ratiocinative
calculus like that of Peano (∃, ∨, ⊃, ∼) or a Jevons Logic
machine.” — Veblen

I “We might put the axioms into a reasoning apparatus like the
logical machine of Stanley Jevons, and see all geometry come
out of it.” — Poincaré
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Formalisation and Machine-Verification

“This notion may seem artificial and peurile; and it is needless to
point out how disastrous it would be in teaching and how hurtful
to mental development; how deadening it would be for
investigators, whose originality it would nip in the bud.”
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Formalisation and Machine-Verification

“I see in logistic only shackles for the inventor. It is no aid in
conciseness — far from it, and if twenty-seven equations were
necessary to establish that 1 is a number, how many would be
needed to prove a real theorem?””
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Hilbert’s Primitives

“Consider three distinct sets of objects. Let the objects of the first
set be called points [. . .]; let the objects of the second set be called
lines”; let the objects of the third set be called planes.
. . .
The points, lines and planes are considered to have certain mutual
relations and these relations are denoted by words like “lie,”
“between”, [...] The precise and mathematically complete
description of these relations follows from the “axioms of
geometry”

new type ("point",0)
new type ("line",0)1

new constant ("on line", ‘:(point -> line -> bool)‘)
new constant ("between",

‘:(point -> point -> point -> bool)‘)

1For simplicity, we’ll just formalise the planar fragment.
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Hilbert’s axioms

I, 1 For every two points A, B there exists a line a that contains
each of the points A, B.

I, 2 For every two points A, B there exits [sic] no more than one
line that contains each of the points A, B.

I, 3 There exist at least two points on a line. There exist at least
three points that do not lie on a line.

` A 6= B −→ ∃a. on line A a ∧ on line B a (I, 1)

` A 6= B ∧ on line A a ∧ on line B a

∧ on line A b ∧ on line B b

−→ a = b

(I, 2)

` ∃A. ∃B. A 6= B ∧ on line A a ∧ on line B a (I, 3.1)

` ∃A. ∃B. ∃C . ¬(∃a. on line A a ∧ on line B a ∧ on line C a)
(I, 3.2)
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Hilbert’s axioms

II, 1 If a point B lies between a point A and a point C then the
points A, B, C are three distinct points of a line, and B then
also lies between C and A.

II, 2 For two points A and C , there always exists at least one point
B on the line AC such that C lies between A and B.

II, 3 Of any three points on a line there exists no more than one
that lies between the other two.

`between A B C −→ A 6= C

∧ (∃a. on line A a ∧ on line B a ∧ on line C a)

∧ between C B A

(II, 1)

` A 6= B −→ ∃C . between A B C (II, 2)

` between A B C −→ ¬between A C B (II, 3)
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Hilbert’s Axioms

II, 4 Let A, B, C be three points that do not lie on a line and let a
be a line in the plane ABC which does not meet any of the
points A, B, C. If the line a passes through a point of the
segment AB, it also passes through a point of the segment
AC , or through a point of the segment BC .

A B

C
aa

D

E
E

FF
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First Proof

THEOREM 3. For two points A and C there always exists at least
one point D on the line AC that lies between A and C .
PROOF. By Axiom I, 3 there exists a point E outside the line AC
and by Axiom II, 2 there exists on AE a point F such that E is a
point of the segment AF . By the same axiom and by Axiom II, 3
there exists on FC a point G that does not lie on the segment FC .
By Axiom II, 4 the line EG must then intersect the segment AC at
a point D.

A C

F

D

E

G
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Representation

collinear : (point→ bool)→ bool

`def collinear Ps ⇐⇒ ∃a. ∀P. P ∈ Ps −→ on line P a.

` collinear {A,B}
` S ⊆ T ∧ collinear T −→ collinear S

` A 6= B ∧ A,B ∈ S ,T −→ collinear S ∧ collinear T

−→ collinear (S ∪ T )

` collinear S ∧ collinear T ∧ ¬collinear U ∧ U ⊆ S ∪ T

∧ A,B ∈ S ,T −→ A = B

` collinear S ∧ ¬collinear {A,B,C}
∧ X ,Y ,A,B ∈ S ∧ X 6= Y −→ ¬collinear {C ,X ,Y }
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Pasch in collinear sets

` ¬collinear {A,B,C}
∧ ¬collinear {A,D,E}
∧ ¬collinear {C ,D,E}
∧ between A D B

−→ ∃F . collinear {D,E ,F}
∧ (between A F C ∨ between B F C ).

(II, 4)
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Verification of Theorem 3

assume A 6= C

so consider E such that

¬(∃a. on line A a ∧ on line C a ∧ on line E a)

by (I, 2), (I, 3.2) 0

obviously by neqs consider F such that between A E F

from 0 by (II, 2) 1

obviously by neqs so consider G such that between F C G

from 0 by (II, 2) 2

obviously by incidence so consider D such that

(∃a. on line E a ∧ on line G a ∧ on line D a)

∧ (between A D C ∨ between F D C )

using K (MATCH MP TAC (II, 4)) from 0, 1

obviously (by eqs ◦ split) qed from 0, 1, 2 by (II, 1), (II, 3)
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Ordering along a line

THEOREM 4. Of any three points A, B, C on a line there always
is one that lies between the other two.

`on line A a ∧ on line B a ∧ on line C a

∧ A 6= B ∧ A 6= C ∧ B 6= C

−→ between A B C ∨ between B A C ∨ between A C B

(THEOREM 4)
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Ordering along a line

THEOREM 5. Given any four points on a line, it is always possible
to label them A, B, C , D in such a way that the point labelled B
lies between A and C and also between A and D, and furthermore,
that the point labelled C lies between A and D and also between
B and D.

`
(
between A B C ∧ between B C D

−→ between A B D ∧ between A C D

)

∧
(
between A B C ∧ between A C D

−→ between A B D ∧ between B C D

)
(THEOREM 5)
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Too many case splits

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7 by . . . [?]

I Where is B in relation to A and P?

I If between A and P, then we can reason transitively that Q is
between P and Q.

I We know P cannot be between A and B.

I If A is between P and B:

I Where is B in relation to A and Q?
I If between A and Q, we can again reason transitively.
I If A is between B and Q, we reason transitively to a

contradiction.
I If Q is between A and B, we again reason transitively to a

contradiction.

Phil Scott Foundations of Geometry



Too many case splits

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7 by . . . [?]

I Where is B in relation to A and P?

I If between A and P, then we can reason transitively that Q is
between P and Q.

I We know P cannot be between A and B.

I If A is between P and B:

I Where is B in relation to A and Q?
I If between A and Q, we can again reason transitively.
I If A is between B and Q, we reason transitively to a

contradiction.
I If Q is between A and B, we again reason transitively to a

contradiction.

Phil Scott Foundations of Geometry



Too many case splits

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7 by . . . [?]

I Where is B in relation to A and P?

I If between A and P, then we can reason transitively that Q is
between P and Q.

I We know P cannot be between A and B.

I If A is between P and B:

I Where is B in relation to A and Q?
I If between A and Q, we can again reason transitively.
I If A is between B and Q, we reason transitively to a

contradiction.
I If Q is between A and B, we again reason transitively to a

contradiction.

Phil Scott Foundations of Geometry



Too many case splits

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7 by . . . [?]

I Where is B in relation to A and P?

I If between A and P, then we can reason transitively that Q is
between P and Q.

I We know P cannot be between A and B.

I If A is between P and B:

I Where is B in relation to A and Q?
I If between A and Q, we can again reason transitively.
I If A is between B and Q, we reason transitively to a

contradiction.
I If Q is between A and B, we again reason transitively to a

contradiction.

Phil Scott Foundations of Geometry



Too many case splits

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7 by . . . [?]

I Where is B in relation to A and P?

I If between A and P, then we can reason transitively that Q is
between P and Q.

I We know P cannot be between A and B.

I If A is between P and B:

I Where is B in relation to A and Q?
I If between A and Q, we can again reason transitively.
I If A is between B and Q, we reason transitively to a

contradiction.
I If Q is between A and B, we again reason transitively to a

contradiction.

Phil Scott Foundations of Geometry



Too many case splits

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7 by . . . [?]

I Where is B in relation to A and P?

I If between A and P, then we can reason transitively that Q is
between P and Q.

I We know P cannot be between A and B.

I If A is between P and B:

I Where is B in relation to A and Q?

I If between A and Q, we can again reason transitively.
I If A is between B and Q, we reason transitively to a

contradiction.
I If Q is between A and B, we again reason transitively to a

contradiction.

Phil Scott Foundations of Geometry



Too many case splits

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7 by . . . [?]

I Where is B in relation to A and P?

I If between A and P, then we can reason transitively that Q is
between P and Q.

I We know P cannot be between A and B.

I If A is between P and B:

I Where is B in relation to A and Q?
I If between A and Q, we can again reason transitively.

I If A is between B and Q, we reason transitively to a
contradiction.

I If Q is between A and B, we again reason transitively to a
contradiction.

Phil Scott Foundations of Geometry



Too many case splits

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7 by . . . [?]

I Where is B in relation to A and P?

I If between A and P, then we can reason transitively that Q is
between P and Q.

I We know P cannot be between A and B.

I If A is between P and B:

I Where is B in relation to A and Q?
I If between A and Q, we can again reason transitively.
I If A is between B and Q, we reason transitively to a

contradiction.

I If Q is between A and B, we again reason transitively to a
contradiction.

Phil Scott Foundations of Geometry



Too many case splits

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7 by . . . [?]

I Where is B in relation to A and P?

I If between A and P, then we can reason transitively that Q is
between P and Q.

I We know P cannot be between A and B.

I If A is between P and B:

I Where is B in relation to A and Q?
I If between A and Q, we can again reason transitively.
I If A is between B and Q, we reason transitively to a

contradiction.
I If Q is between A and B, we again reason transitively to a

contradiction.

Phil Scott Foundations of Geometry



Reduce to ordering of naturals

`finite X ∧ collinear X

−→ ∃f . ∀A. ∀B. ∀C . A ∈ X ∧ B ∈ X ∧ C ∈ X

−→

 between A B C

⇐⇒ (f A < f B ∧ f B < f C )

∨ (f C < f B ∧ f B < f A)


∧ ∀A. ∀B. A ∈ X ∧ B ∈ X −→ (A = B ⇐⇒ f A = f B).

so consider R such that between A R B 7

have between P A Q ∧ between P B Q from 6 by . . . 8

hence between P R Q from 6, 7

using ORDER TAC {P,Q,R,A,B}
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Jordan Curve Theorem for Polygons

THEOREM 9. Every single [simple] polygon lying in a
plane α separates the points of the plane α that are not
on the polygonal segment of the polygon into two
regions, [. . .].

A

A′
B

B′
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Formalisation of Polygonal Segments

adjacent : []→ [(point, point)]

adjacent [P0,P1,P2, . . . ,Pn]

= zip (butlast [P0,P1,P2, . . . ,Pn]) (tail [P0,P1,P,2, . . . ,Pn])

= zip [ P0, P1, P2, . . . , Pn−1 ]
[ P1, P2, P3, . . . , Pn ]

= [(P0,P1), (P1,P2), (P2,P3), . . . , (Pn−1,Pn)]

on polypath : [point]→ point→ bool

on polypath Ps P

⇐⇒ mem P Ps ∨ ∃x y . mem (x , y) adjacent Ps ∧ between x P y
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Simple polygons

simple polygon : [point]→ bool

`def simple polygon Ps ⇐⇒
3 ≤ length Ps

∧ head ps = last Ps

∧ pairwise (6=) (butlast Ps)

∧ ¬(∃P. ∃Q. ∃X .(
mem X Ps ∧ mem (P,Q) (adjacent Ps) ∧ between P X Q

)
∧ pairwise (λ(P,Q) (P ′,Q ′).

¬(∃X . between P X P ′ ∧ between Q X Q ′) (adjacent Ps)).
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Polygonal Jordan Curve Theorem

`simple polygon Ps

−→ ∃P. ∃Q. ¬on polypath Ps P ∧ ¬on polypath Ps Q

∧ ¬polypath connected (on polypath Ps) P Q

`simple polygon Ps

∧ ¬on polypath Ps P ∧ ¬on polypath Ps Q ∧ ¬on polypath Ps R

−→ polypath connected (on polypath Ps) P Q

∨ polypath connected (on polypath Ps) P R

∨ polypath connected (on polypath Ps) Q R

Phil Scott Foundations of Geometry



Jordan Curve Theorem for Polygons

“With the aid of Theorem 8, one obtains [the theorem]
without much difficulty.” — Hilbert

A

A′
B

B′
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Jordan Curve Theorem for Polygons

“With the aid of Theorem 8, one obtains [the theorem]
without much difficulty.” — Hilbert

A

B
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Prose Proofs

I Almost all useless without more axioms.

I Plumb line proof requires that we can cast rays in a fixed
direction.

I Winding proof assumes a theory of angles.

I Both require reasoning about continuity.

Phil Scott Foundations of Geometry



Prose Proofs

I Almost all useless without more axioms.

I Plumb line proof requires that we can cast rays in a fixed
direction.

I Winding proof assumes a theory of angles.

I Both require reasoning about continuity.

Phil Scott Foundations of Geometry



Prose Proofs

I Almost all useless without more axioms.

I Plumb line proof requires that we can cast rays in a fixed
direction.

I Winding proof assumes a theory of angles.

I Both require reasoning about continuity.

Phil Scott Foundations of Geometry



Prose Proofs

I Almost all useless without more axioms.

I Plumb line proof requires that we can cast rays in a fixed
direction.

I Winding proof assumes a theory of angles.

I Both require reasoning about continuity.

Phil Scott Foundations of Geometry



Veblen to the Rescue?

“[Jordan’s] proof, however, is unsatisfactory to many
mathematicians. It assumes the theorem without proof in
the important special case of a simple polygon.” — Veblen

“[Veblen’s] proof was part of his larger project to
axiomatise analysis situs as an isolated field of
mathematics. The model for this project was
Hilbert’s axiomatisation of the foundations of
geometry in 1899.”

Phil Scott Foundations of Geometry



Veblen to the Rescue?

“[Jordan’s] proof, however, is unsatisfactory to many
mathematicians. It assumes the theorem without proof in
the important special case of a simple polygon.” — Veblen

“[Veblen’s] proof was part of his larger project to
axiomatise analysis situs as an isolated field of
mathematics. The model for this project was
Hilbert’s axiomatisation of the foundations of
geometry in 1899.”

Phil Scott Foundations of Geometry



Veblen’s Proof

Suppose Q1Q2 cuts P at O. Then we cannot connect Q1 and Q2

by any polygonal path without crossing the polygon.

P1

P2 P3

P4 P5

Q2

Q1

O

Q3 Q4

Q6

Q7
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Veblen’s Proof

Suppose polygon q intersects polygon pn on P1P2 exactly once at
O. We must find another point of intersection with another segment
of Pn.

pn

q

P1

P2 P3

P4 P5

O

Q1

Q2

Q3 Q4

Q5

Q6

Q7
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Veblen’s Proof

q meets P1P2P3 somewhere other than O. Suppose it meets on
P1P3.

pn

P1

P2 P3

P4 P5

O

Q1

Q2

Q3 Q4

Q5

Q6

Q7

q
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Veblen’s Proof

Obtain Ok Q2Q3Q4Q5Q6Oj , which “has a point inside and also a
point outside the triangle P1P2P3 and cuts the [triangle] P1P2P3

only once.”(my emphasis)

pn

P1

P2 P3

P4 P5

O

Ok

Oj

Q2

Q3 Q4

Q5

Q6

q
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Veblen’s Proof

“Hence it has a point inside and a point outside any triangle of
which P1P3 is a side.”

pn

P1

P2 P3

P4 P5

O

Ok

Oj

Q2

Q3 Q4

Q5

Q6

q
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Veblen’s Proof

From this we conclude that Ok Q2Q3Q4Q5Q6Oj cuts either P3P4 or
P1P4.

pn

P1

P2 P3

P4 P5

O

Ok

Oj

Q2

Q3 Q4

Q5

Q6

q
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Veblen’s Proof

“continuing this process”

pn

P1

P2 P3

P4 P5

O

Ok

Oj

Q2

Q3 Q4

Q5

Q6

q
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Veblen’s Proof

“continuing this process” ?

P1

P2 P3

P4 P5

pn

Q

Ok

Ok

Oj

Q2

Q3 Q4

Q6

Q7

q
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As it turns out...

I According to Guggenheimer (citing Lennes and Hahn), the
proof assumes the polygon can be triangulated and is only
valid for convex polygons.

I According to Hahn, the proof is just “inconclusive”.
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New Proof by Parity

Ps

P1

P2 P3

P4 P5

P6P7

P8

Qs

O A

B

Phil Scott Foundations of Geometry



New Proof by Parity

Ps

P1

P2 P3

P4 P5

P6P7

P8

Qs

A

B
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P2 P3

P4 P5
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New Proof by Parity

Ps

P1

P2 P3

P4 P5

P6P7

P8

Qs

Y

A

B
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Crossing a Triangle

A B

C

P1

P2

P3

P4 P5

P6

P7

P8P9

P10
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Context (Γ : bool)

A B

C

P1

P2

P3

P4 P5

P6

P7

P8P9

P10

⊥
⊥

⊥ ⊥

⊤

⊤⊤
⊤

⊥
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Definition of Crossings

`def crossing (A,B,C ) Γ Pi Pi+1

=



0, if between A Pi B ∧ between A Pi+1 B

1, else if ∃R. between Pi R Pi+1 ∧ between A R B

1, else if between A Pi B

∧ (∃R. between Pi R Pi+1

∧ in triangle (A,B,C ) R ⇐⇒ ¬Γ)

0, otherwise.

(1)
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Definition of Context change

`def Γnext (A,B,C ) Γ Pi Pi+1

⇐⇒ in triangle (A,B,C ) Pi+1

∨

 on triangle (A,B,C ) Pi+1

∧
(

(∃R. between Pi R Pi+1 ∧ in triangle (A,B,C ) R)

∨ on triangle (A,B,C ) Pi ∧ Γ)

) .

Γfinal (A,B,C ) Γ [] = Γ

Γfinal (A,B,C ) Γ ((Pi ,Pi+1) : segments) =

Γfinal (A,B,C ) (Γnext (A,B,C ) Γ Pi Pi+1) segments
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Crossings cases

A B

C

P1

P2

A B

C

P1

P2

A B

C P1

P2

A B

C P1

P2

A B

C

P1

P2

A B

C

P1

P2
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A Crossings Lemma

theorem ¬(∃a. on line A a ∧ on line B a ∧ on line C a)

∧ crossing (A,B,C ) X Pi Pi+1 = 1

∧ crossing (A,C ,B) X Pi Pi+1 = 1

−→ crossing (B,C ,A) X Pi Pi+1 = 0

`¬(∃a. on line A a ∧ on line B a ∧ on line C a)

∧ ¬on polypath [Pi ,Pi+1] A ∧ ¬on polypath [Pi ,Pi+1] B

∧ ¬on polypath [Pi ,Pi+1] C

∧ (¬on triangle (A,B,C ) Pi −→ (in triangle (A,B,C ) Pi ⇐⇒ Γ))

−→

 crossing (A,B,C ) Γ Pi Pi+1 + crossing (A,C ,B) Γ Pi Pi+1

+ crossing (B,C ,A) Γ Pi Pi+1 = 1

⇐⇒ Γ = ¬Γnext (A,B,C ) Γ Pi Pi+1
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Parity of Crossings

` polypath crossings (A,B,C ) Γ (adjacent Ps) > 0

−→ ∃Q. on polypath Ps Q ∧ between A Q B

`Qs = [P] + Ps + [P]

∧ Γinitial = Γfinal (A,B,C ) Γ (adjacent Qs)

∧ ¬on polypath Qs A ∧ ¬on polypath Qs B ∧ ¬on polypath Qs C

∧ ¬(∃a. on line A a ∧ on line B a ∧ on line C a)

−→ even

 polypath crossings (A,B,C ) Γinitial (adjacent Qs)

+ polypath crossings (A,C ,B) Γinitial (adjacent Qs)

+ polypath crossings (B,C ,A) Γinitial (adjacent Qs)
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Moving a vertex (well-definedness)

`Qs = [P] + Ps + [P]

∧ ¬on polypath Qs A ∧ ¬on polypath Qs B

∧ ¬(∃a. on line A a ∧ on line B a ∧ on line C a)

∧ ¬(∃a. on line A a ∧ on line B a ∧ on line C ′ a)

−→ ∃Γ′. polypath crossings (A,B,C )

(Γfinal (A,B,C ) Γ (adjacent Qs))

(adjacent Qs)

= polypath crossings (A,B,C ′)

(Γfinal (A,B,C ′) Γ′ (adjacent Qs))

(adjacent Qs)
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Verified Theorem

If two closed polygonal segments intersect at a point, then they
meet again at another point.

P1

P2

Q1

Q2
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Verified Theorem

¬(∃a.on line P1 a ∧ on line P2 a ∧ on line Q1 a ∧ on line Q2 a)

between P1 X P2 ∧ between Q1 X Q2

−→ ∃Y .on polypath (P2 : Ps)Y

∧ on polypath (Q1 : Q2 : Qs) Y

∨ on polypath (Q2 : Qs) Y

∧ on polypath (P1 : P2 : Ps) Y
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Polygonal Jordan Curve Theorem: Part 2

There are at most two regions in the plane of a polygon which
cannot be connected by a polygonal segment.

I Consider a path which follows the edges of the polygon,
staying close enough so as to avoid intersecting it.

I But in our general setting, we cannot run paths parallel to the
sides of the polygon.

I We cannot measure or compare distances (no ruler or
compass)

I We cannot reason about our orientation via angles.

I How do we squeeze through corridors in the maze which
might be infinitesimally narrow?
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Polygonal Jordan Curve Theorem: Part 2

There are at most two regions in the plane of a polygon which
cannot be connected by a polygonal segment.

I Consider a path which follows the edges of the polygon,
staying close enough so as to avoid intersecting it.

I But in our general setting, we cannot run paths parallel to the
sides of the polygon.

I We cannot measure or compare distances (no ruler or
compass)

I We cannot reason about our orientation via angles.

I How do we squeeze through corridors in the maze which
might be infinitesimally narrow?
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Polygonal JCT Part 2: Proof

Ps
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Polygonal JCT Part 2: Proof

Ps

X

Y
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Polygonal JCT Part 2: Proof

Ps

X

Y
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Lines-of-sight

Ps

X

Y

Where are we?
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Lines-of-sight

PsP0

P10

P11

P12

X

Y

Let’s see: consider all the points between P0 and X and P0 and
Y
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Lines-of-sight

PsP0

P10

P11

P12

X

Y

Now pick out the intersections along the polygon’s path.
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Lines-of-sight

PsP0

P10

P11

P12

X

Y

Use ORDER TAC
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Lines-of-sight

PsP0

P10

P11

P12

X

Y

Z

Raycast

∀Ps X P0. ¬on polypath Ps X ∧ on polypath Ps P0

−→ ∃Z . on polypath Ps Z ∧ (between X Z P0 ∨ P0 = Z )

∧ ¬(∃R. between X R Z ∧ on polypath Ps R)
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Lines-of-sight

PsP0

P10

P11

P12

X

Y

Z

X has line-of-sight to the point Z on edge P10P11.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z

We now want to navigate so that X has line-of-sight to the next
edge: P11P12.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z

X and P12 are on opposite sides of the line P10P11.

Formally, there is a point between X and P12 on the line P10P11.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z

X and P12 are on opposite sides of the line P10P11.
Formally, there is a point between X and P12 on the line P10P11.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z

X and P12 are on opposite sides of the line P10P11.
Formally, there is a point between X and P12 on the line P10P11.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z

Let’s take a closer look.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

Find some Z ′ in the direction P10P11 by Axiom II,2

` P10 6= P11 −→ ∃Z ′. between P10 P11 Z ′

(raycast if necessary).
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

X does not have line-of-sight to Z ′

Let’s draw the triangle ZZ ′X .
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

X does not have line-of-sight to Z ′

Let’s draw the triangle ZZ ′X .
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

P19

Note that the first point which is inside this triangle is P19.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

P19

Formally,

1. there is no point between P19 and Z ′ on the line XZ ;

2. there is no point between P19 and X on the line ZZ ′;
3. there is no point between P19 and Z on the line XZ ′;

Phil Scott Foundations of Geometry



First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

P19

Formally,

1. there is no point between P19 and Z ′ on the line XZ ;

2. there is no point between P19 and X on the line ZZ ′;

3. there is no point between P19 and Z on the line XZ ′;

Phil Scott Foundations of Geometry



First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

P19

Formally,

1. there is no point between P19 and Z ′ on the line XZ ;

2. there is no point between P19 and X on the line ZZ ′;
3. there is no point between P19 and Z on the line XZ ′;
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

P19

S

We now want to find the point S where Z ′P19 meets XZ .

Use Pasch’s Axiom once.
And once more.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

P19

a

S ′

We now want to find the point S where Z ′P19 meets XZ .
Use Pasch’s Axiom once.

And once more.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

P19

b S ′

S

We now want to find the point S where Z ′P19 meets XZ .
Use Pasch’s Axiom once.
And once more.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

S

We now look at the triangle ZZ ′S

It doesn’t contain any points of the polygon. So any lines between
its edges are lines-of-sight.
So pick a point X ′ between S ′ and Z (Hilbert’s Theorem 4).

Phil Scott Foundations of Geometry



First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

S

We now look at the triangle ZZ ′S
It doesn’t contain any points of the polygon. So any lines between
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So pick a point X ′ between S ′ and Z (Hilbert’s Theorem 4).
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z
Z ′

S

X ′

We now look at the triangle ZZ ′S
It doesn’t contain any points of the polygon. So any lines between

its edges are lines-of-sight.
So pick a point X ′ between S ′ and Z (Hilbert’s Theorem 4).
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z ′X ′
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z ′X ′

We still need line-of-sight to a point on P11P12.
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z ′X ′

Z
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z ′X ′

Z

P15
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First Move: Navigating a Local Concavity
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P11
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X

Y
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z ′X ′

S ′

Z ′′

P15

P16
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First Move: Navigating a Local Concavity

PsP0

P10

P11

P12

X

Y

Z ′X ′

Z ′′

P15

P16
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Second Move: Navigating a Local Convexity

PsP0

P10

P11

P12

X

Y

Z ′X ′

P13

We now want to navigate so that Z ′ has line-of-sight to the next
edge: P12P13.

Formally, Z ′ and P13 are on the same side of the line P11P12.
More formally, there is no point between Z ′ and P13 on the line

P11P12.
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Second Move: Navigating a Local Convexity

PsP0

P10

P11

P12

X

Y

Z ′X ′

P13

We now want to navigate so that Z ′ has line-of-sight to the next
edge: P12P13.
Formally, Z ′ and P13 are on the same side of the line P11P12.

More formally, there is no point between Z ′ and P13 on the line
P11P12.
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Second Move: Navigating a Local Convexity

PsP0

P10

P11

P12

X

Y

Z ′X ′

P13

P15

Squeeze!

`¬on polypath (Ps − [P11, P12]) P11

∧ ¬(∃X . between Z ′ X P11 ∧ on polypath (Ps − [P11, P12]) X )

∧ ¬(∃X . between P11 X P12 ∧ on polypath (Ps − [P11, P12]) X )

−→ ∃S ′. between Z ′ S ′ P11

∧ ¬∃X . in triangle (S ′, P11, P12) X ∧ on polypath (Ps − [P11, P12]) X .
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Second Move: Navigating a Local Convexity

PsP0

P10

P11

P12

X

Y

Z ′X ′

P13

P15

S

Squeeze!
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∧ ¬(∃X . between Z ′ X P11 ∧ on polypath (Ps − [P11, P12]) X )

∧ ¬(∃X . between P11 X P12 ∧ on polypath (Ps − [P11, P12]) X )

−→ ∃S ′. between Z ′ S ′ P11
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Second Move: Navigating a Local Convexity
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Second Move: Navigating a Local Convexity

PsP0

P10

P11

P12

X

Y

Z ′X ′

P13

S

P16

S ′

Squeeze!

`¬on polypath (Ps − [P11, P12]) P11

∧ ¬(∃X . between Z ′ X P11 ∧ on polypath (Ps − [P11, P12]) X )

∧ ¬(∃X . between P11 X P12 ∧ on polypath (Ps − [P11, P12]) X )

−→ ∃S ′. between Z ′ S ′ P11

∧ ¬∃X . in triangle (S ′, P11, P12) X ∧ on polypath (Ps − [P11, P12]) X .
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Second Move: Navigating a Local Convexity

PsP0

P10

P11

P12

X

Y

Z ′X ′
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S ′

Squeeze!

`¬on polypath (Ps − [P11, P12]) P11
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Second Move: Navigating a Local Convexity

PsP0

P10

P11

P12

X

Y

Z ′X ′

P13

X ′′

Squeeze!

`¬on polypath (Ps − [P11, P12]) P11

∧ ¬(∃X . between Z ′ X P11 ∧ on polypath (Ps − [P11, P12]) X )

∧ ¬(∃X . between P11 X P12 ∧ on polypath (Ps − [P11, P12]) X )

−→ ∃S ′. between Z ′ S ′ P11

∧ ¬∃X . in triangle (S ′, P11, P12) X ∧ on polypath (Ps − [P11, P12]) X .

Phil Scott Foundations of Geometry



Second Move: Navigating a Local Convexity

PsP0

P10

P11
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X

Y

Z ′X ′

P13

P15
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∧ ¬(∃X . between P12 X P11 ∧ on polypath (Ps − [P12, P13]) X )

−→ ∃Z ′′. between P13 Z ′′ P12

∧ ¬∃X . in triangle (Z ′′, P12, P11) X ∧ on polypath (P − [P12, P13]) X .
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Second Move: Navigating a Local Convexity

PsP0

P10

P11

P12

X

Y

Z ′X ′

P13

S

P15

S ′

Squeeze!

`¬(on polypath (Ps − [P12, P13])P12

∧ ¬(∃X . between P13 X P12 ∧ on polypath (Ps − [P12, P13]) X )

∧ ¬(∃X . between P12 X P11 ∧ on polypath (Ps − [P12, P13]) X )

−→ ∃Z ′′. between P13 Z ′′ P12

∧ ¬∃X . in triangle (Z ′′, P12, P11) X ∧ on polypath (P − [P12, P13]) X .
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Second Move: Navigating a Local Convexity

PsP0

P10

P11

P12

X

Y

Z ′X ′

P13

Squeeze!

`¬(on polypath (Ps − [P12, P13])P12

∧ ¬(∃X . between P13 X P12 ∧ on polypath (Ps − [P12, P13]) X )

∧ ¬(∃X . between P12 X P11 ∧ on polypath (Ps − [P12, P13]) X )

−→ ∃Z ′′. between P13 Z ′′ P12

∧ ¬∃X . in triangle (Z ′′, P12, P11) X ∧ on polypath (P − [P12, P13]) X .
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Rinse and Repeat

PsP0

P10

P11

P12

X

Y

Z ′X ′

P13
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And again

A

B
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Edge-to-edge

`between P1 X ′ P2 ∧ P2 6= P3

∧ ¬on polypath (P1 : P2 : P3 : Ps) X ∧ ¬on polypath (P3 : Ps) P2

∧ ¬(∃Z . between X Z X ′ ∧ on polypath (P1 : P2 : P3 : Ps) Z )

∧ ¬(∃Z . between P1 Z P2 ∧ on polypath (P2 : P3 : Ps) Z )

∧ ¬(∃Z . between P2 Z P3 ∧ on polypath (P3 : Ps) Z )

−→ ∃Y . ∃Y ′.

polypath connected (on polypath (P1 : P2 : P3 : Ps)) X Y

∧ between P2 Y ′ P3 ∧ ¬on polypath (P1 : P2 : P3 : Ps) Y )

∧ ¬∃Z . between Y Z Y ′ ∧ (P1 : P2 : P3 : Ps) Z ).
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Moving to the first edge

`simple polygon Ps ∧ ¬on polypath Ps X

∧ mem (P,Q) (adjacent Ps) ∧ between P X ′ Q

∧ ¬(∃Z . between X Z X ′ ∧ on polypath Ps Z )

−→ ∃Y . ∃Y ′. polypath connected (on polypath Ps) X Y

∧ ¬on polypath Ps Y

∧ between (head Ps) Y ′ (head (tail Ps))

∧ ¬∃Z . between Y Z Y ′ ∧ on polypath Ps Z .
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Polygonal Jordan Curve Theorem

`simple polygon Ps

−→ ∃P. ∃Q. ¬on polypath Ps P ∧ ¬on polypath Ps Q

∧ ¬polypath connected (on polypath Ps) P Q

`simple polygon Ps

∧ ¬on polypath Ps P ∧ ¬on polypath Ps Q ∧ ¬on polypath Ps R

−→ polypath connected (on polypath Ps) P Q

∨ polypath connected (on polypath Ps) P R

∨ polypath connected (on polypath Ps) Q R

No subgoals(!)
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∨ polypath connected (on polypath Ps) Q R
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Final Notes

I Axioms here define what is sometimes called Ordered
Geometry.

I “It is astonishing that none of the textbooks of elementary
axiomatic geometry gives a proof [of the Polygonal Jordan
Curve Theorem from Ordered Geometry]” — Guggenheimer

I Now formally verified in a “readable” style.
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The Future of Verified Mathematics

∀e.e > 0

−→ FINITE



(a,b, c) | coprime (a, b)

∧ coprime (a, c)

∧ coprime (b, c)

∧ a + b = c

∧ c > ITSET (×)

{p | prime p ∧ p divides (a× b × c)}) 1

EXP (1 + e)



...

No subgoals (?)
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