
The ACL2 Theorem Prover

and
How It Came to be Used in Industry

(A Sprint through 45 Years of Verification History)

J Strother Moore
Department of Computer Science
University of Texas at Austin

1

Boyer-Moore-Kaufmann Project

Edinburgh Pure Lisp Theorem Prover [BM, 1973]

A Computational Logic [BM, 1979]

NQTHM [BM, 1981]

ACL2 [BM,KM 1989–present]

| | | | | |

1970 1980 1990 2000 2010 2020

Vision: To build a practical verification system:

axiomatize a functional programming language,

build a theorem prover for it, and use them to

model and verify computational artifacts.

2

ACL2

A Computational Logic for

Applicative Common Lisp

A fully integrated verification environment for a

practical applicative subset of an ANSI standard

programming language

{kaufmann,moore}@cs.utexas.edu

http://www.cs.utexas.edu/users/moore/acl2

I can’t explain ACL2 in the time we have, I can only

highlight some capabilities.

3

History of Theorems Proved (by Our
Provers)

simple list processing

academic math and CS

breakthrough commercial

applications

routine industrial use

| | | | | |

1970 1980 1990 2000 2010 2020

4

A Few Axioms

• t 6= nil

• x = nil → (if x y z) = z

• x 6= nil → (if x y z) = y

• (car (cons x y)) = x

• (cdr (cons x y)) = y

• (endp nil) = t

• (endp (cons x y)) = nil

5

A Common Abbreviation

’(1 2 3)

=

(cons 1 ’(2 3))

=

. . .

(cons 1 (cons 2 (cons 3 nil)))

6

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

7

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

8

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

(ap ’(1 2 3) ’(4 5 6)) =

(ap ’(1 2 3) ’(4 5 6))

9

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

(ap ’(1 2 3) ’(4 5 6)) =

(ap (cons 1 (cons 2 (cons 3 nil))) ’(4 5 6))

10

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

(ap ’(1 2 3) ’(4 5 6)) =

(cons 1 (ap (cons 2 (cons 3 nil)) ’(4 5 6)))

11

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

(ap ’(1 2 3) ’(4 5 6)) =

(cons 1 (cons 2 (ap (cons 3 nil) ’(4 5 6))))

12

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

(ap ’(1 2 3) ’(4 5 6)) =

(cons 1 (cons 2 (cons 3 (ap nil ’(4 5 6)))))

13

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

(ap ’(1 2 3) ’(4 5 6)) =

(cons 1 (cons 2 (cons 3 ’(4 5 6))))

14

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

(ap ’(1 2 3) ’(4 5 6)) =

(cons 1 (cons 2 ’(3 4 5 6)))

15

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y)))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

(ap ’(1 2 3) ’(4 5 6)) =

(cons 1 ’(2 3 4 5 6))

16

Definition – List Concatenation

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

Thm: (ap nil y) = y

Thm: (ap (cons u v) y) = (cons u (ap v y))

(ap ’(1 2 3) ’(4 5 6)) =

’(1 2 3 4 5 6)

17

Theorem ap is associative (1971)

∀a∀b∀c : ap(ap(a,b),c) = ap(a,ap(b,c)).

(equal (ap (ap a b) c)

(ap a (ap b c)))

18

(equal (ap (ap a b) c)

(ap a (ap b c)))

19

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

20

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap (ap a b) c)

(ap a (ap b c)))

21

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap a (ap b c)))

22

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap a (ap b c)))

23

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap b c))

24

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap b c))

25

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

T

26

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap a b) c)

(ap a (ap b c)))

27

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap a b) c)

(ap a (ap b c)))

28

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (cons (car a)

(ap (cdr a) b)) c)

(ap a (ap b c)))

29

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (cons (car a)

(ap (cdr a) b)) c)

(ap a (ap b c)))

30

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(ap a (ap b c)))

31

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(ap a (ap b c)))

32

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(cons (car a)

(ap (cdr a) (ap b c))))

33

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(cons (car a)

(ap (cdr a) (ap b c))))

34

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal

(ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))

35

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))

36

(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))

37

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

T

38

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Q.E.D.

39

ACL2 Demo 1

Notes: The four demos in this talk are with ACL2

even though many of the proofs in the first few

demos were first done with earlier Boyer-Moore

provers.

The ACL2 image used here has been configured to

support these four demos.

40

Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

41

Irrelevance

User

Equality

Destructor Elimination

Generalization

Induction

Elimination of

congruence−based rewriting

evaluation
propositional calculus
BDDs
equality
uninterpreted function symbols
rational linear arithmetic
rewrite rules
recursive definitions
back− and forward−chaining
metafunctions

Simplification

42

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith V
ectors

prover

proposed definitions
conjectures and
advice

theorem

43

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith V
ectors

prover

proposed definitions
conjectures and
advice

theorem

44

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith V
ectors

prover

proposed definitions
conjectures and
advice

theorem

45

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith V
ectors

prover

proposed definitions
conjectures and
advice

theorem

46

ACL2 Community Books (2017)

https://github.com/acl2/acl2/books/

contains ∼6,000 user-supplied books.

47

ACL2 Demo 2

48

History of Theorems Proved

simple list processing

academic math and CS

breakthrough commercial

applications

routine industrial use

| | | | | |

1970 1980 1990 2000 2010 2020

49

Academic Math (Nqthm, 1980s)

• undecidability of the halting problem

(18 lemmas)

• invertibility of RSA encryption

(172 lemmas)

• Gauss’ law of quadratic reciprocity [Russinoff]

(348 lemmas)

• Gödel’s First Incompleteness Theorem [Shankar]

(1741 lemmas)

50

Academic CS (Nqthm, 1980s)

• The CLI Verified Stack:

– microprocessor: gates to machine code [Hunt]

– assembler-linker-loader (3326 lemmas) [Moore]

– compilers [Young, Flatau]

– operating system [Bevier]

– applications [Wilding]

These theorems guarantee that a property proved

about an app holds when it is compiled, assembled,

linked, loaded, and run on the gate-level machine.

51

ACL2 Demo 3

52

Seeing Nqthm struggle with “large” models like

Piton and other components of the CLI verified

stack convinced us to re-implement it with scaling

in mind.

Thus was born ACL2 (1989).

53

Hisory of Theorems Proved

simple list processing

academic math and CS

breakthrough commercial

applications

routine industrial use

| | | | | |

1970 1980 1990 2000 2010 2020

54

An elusive circuitry error is causing a chip used in

millions of computers to generate inaccurate results

— NY Times, “Circuit Flaw Causes Pentium Chip

to Miscalculate, Intel Admits,” Nov 11, 1994

55

Intel Corp. last week took a $475 million write-off

to cover costs associated with the divide bug in the

Pentium microprocessor’s floating-point unit — EE

Times, Jan 23, 1995

56

IEEE 754 Floating Point Standard

Elementary operations are to be performed as

though the infinitely precise (standard

mathematical) operation were performed and then

the result rounded to the indicated precision.

57

AMD K5 Algorithm FDIV(p, d,mode)

1. sd0 = lookup(d) [exact 17 8]

2. dr = d [away 17 32]

3. sdd0 = sd0 × dr [away 17 32]

4. sd1 = sd0 × comp(sdd0, 32) [trunc 17 32]

5. sdd1 = sd1 × dr [away 17 32]

6. sd2 = sd1 × comp(sdd1, 32) [trunc 17 32]

... ... =

29. q3 = sd2 × ph3 [trunc 17 24]

30. qq2 = q2 + q3 [sticky 17 64]

31. qq1 = qq2 + q1 [sticky 17 64]

32. fdiv = qq1 + q0 mode

58

Using the Reciprocal

1 2

+
+
+

.0 4

.0 0 0 0 0 8

-2.0 4
-2.

3 5.8 3 3 3 3 4
4 3 0.0 0 0 0 0 0
4 3 2.

-.1 7
3 6.

.0 4 0 8

.0 0 0 8-

.0 0 3 4

.0 0 0 0 6 6-

.0 0 0 7 9 2-
-

Reciprocal Calculation:

1/12 = 0.0833 ≈ 0.083 = sd2

Quotient Digit Calculation:

0.083 × 430.0000 = 35.6900000 ≈ 36.000000 = q0
0.083 × -2.0000 = -.1660000 ≈ -.170000 = q1
0.083 × .0400 = .0033200 ≈ .003400 = q2
0.083 × -.0008 = -.0000664 ≈ -.000067 = q3

Summation of Quotient Digits:

q0 + q1 + q2 + q3 = 35.833333

59

Computing the Reciprocal

i

2
sd sd sd

0 1
1/d

sd
i+1

= sd
i
(2 - sd d)

dy
dx

= - x
-2

y = 1
x

- d

60

top 8 bits approx

of d inverse

1.00000002 0.111111112
1.00000012 0.111111012
1.00000102 0.111110112
1.00000112 0.111110012
1.00001002 0.111101112
1.00001012 0.111101012
1.00001102 0.111101002
1.00001112 0.111100102
1.00010002 0.111100002
1.00010012 0.111011102
1.00010102 0.111011012

... ...
1.00101102 0.110110102
1.00101112 0.110110002
1.00110002 0.110101112
1.00110012 0.110101012
1.00110102 0.110101002
1.00110112 0.110100112
1.00111002 0.110100012
1.00111012 0.110100002
1.00111102 0.110011112
1.00111112 0.110011012

top 8 bits approx

of d inverse

1.01000002 0.110011002
1.01000012 0.110010112
1.01000102 0.110010102
1.01000112 0.110010002
1.01001002 0.110001112
1.01001012 0.110001102
1.01001102 0.110001012
1.01001112 0.110001002
1.01010002 0.110000102
1.01010012 0.110000012
1.01010102 0.110000002

... ...
1.01101102 0.101101002
1.01101112 0.101100112
1.01110002 0.101100102
1.01110012 0.101100012
1.01110102 0.101100002
1.01110112 0.101011112
1.01111002 0.101011102
1.01111012 0.101011012
1.01111102 0.101011002
1.01111112 0.101010112

top 8 bits approx

of d inverse

1.10000002 0.101010102
1.10000012 0.101010012
1.10000102 0.101010002
1.10000112 0.101010002
1.10001002 0.101001112
1.10001012 0.101001102
1.10001102 0.101001012
1.10001112 0.101001002
1.10010002 0.101000112
1.10010012 0.101000112
1.10010102 0.101000102

... ...
1.10101102 0.100110012
1.10101112 0.100110002
1.10110002 0.100101112
1.10110012 0.100101112
1.10110102 0.100101102
1.10110112 0.100101012
1.10111002 0.100101012
1.10111012 0.100101002
1.10111102 0.100100112
1.10111112 0.100100112

top 8 bits approx

of d inverse

1.11000002 0.100100102
1.11000012 0.100100012
1.11000102 0.100100012
1.11000112 0.100100002
1.11001002 0.100011112
1.11001012 0.100011112
1.11001102 0.100011102
1.11001112 0.100011102
1.11010002 0.100011012
1.11010012 0.100011002
1.11010102 0.100011002

... ...
1.11101102 0.100001012
1.11101112 0.100001002
1.11110002 0.100001002
1.11110012 0.100000112
1.11110102 0.100000112
1.11110112 0.100000102
1.11111002 0.100000102
1.11111012 0.100000012
1.11111102 0.100000012
1.11111112 0.100000002

61

The Futility of Testing

If AMD builds this, will it work?

A bug in this design could cost AMD hundreds of

millions of dollars.

On Sunway TaihuLight (93 petaflops = 93 ×250

operations per second), testing all possible cases

would take

2,726,112,523,746,722,547,161,199

∼ 2.7× 1024 years.

62

The library of floating point lemmas and the main

theorem were proved with ACL2 under the direction

of two ACL2 users and the designer of the FDIV

algorithm.

The proofs took 9 weeks starting from Peano’s

axioms.

The proofs were completed before the K5 was

fabricated.

9 weeks < 2,726,112,523,746,722,547,161,199 years

The library was used in subsequent proofs.

63

By 1997, AMD had

• built software to translate their in-house hardware

design language to ACL2

• used the tool to generate ACL2 functions

modeling all the elementary floating point

arithmetic on the soon-to-be fabricated AMD

Athlon microprocessor

64

• tested the ACL2 functions by running them on

AMD’s standard floating-point test suite (> 100

million arithmetic problems) and compared the

answers to AMD’s design simulator

• proved the ACL2 functions compliant with the

IEEE Standard

• found (and fixed) 3 design errors not exposed by

the 100 million tests

65

Other Early Industrial Users of ACL2

• Motorola: DSP and microcode proofs

• AMD: floating-point on Opteron

• Rockwell-Collins: silicon JVM chip, AAMP7

crypo-box, Greenhills OS

• IBM: Power 4 FDIV and SQRT

• Sun Microsystems (via contract): Sun JVM class

loader and byte-code verifier

66

ACL2 Demo 4

class Fact {

public static int fact(int n){

if (n>0)

{return n*fact(n-1);}

else return 1;

}

public static void main(String[] args){

int n = Integer.parseInt(args[0], 10);

System.out.println(fact(n));

return;

}

}

67

History of Theorems Proved

simple list processing

academic math and CS

breakthrough commercial

applications

routine industrial use

| | | | | |

1970 1980 1990 2000 2010 2020

68

In 2007, Centaur Technology, Inc., challenged the

ACL2 community to verify its floating-point adder:

• handles single (32-bit), double (64-bit) and

extended (80-bit) additions

• pipelined to deliver 4-results per cycle

• 33,700 lines in 680 Verilog modules

• 1074 input signals (including 26 clocks) and 374

output signals

69

Done! After exposing and fixing one very rare bug.

(The bug occurred on exactly one pair of 80-bit

inputs, i.e., 1 case of 2160 cases.)

70

ACL2 at Centaur Today

ACL2 is an indispensable part of the Centaur design

process

Centaur FV team consists of 3 full-time employees

and a couple of interns

71

Centaur has an ACL2 specification of the x86

Validated by routinely running millions of tests

comparing ACL2 x86 to Intel, AMD, and Centaur

hardware

The ACL2 tool-chain translates the entire Centaur

design (700,000+ lines of Verilog) into a formal

object in a few minutes

The translated model is validated by running

millions of tests against Cadence NC Verilog and

Synopsys VCS Verilog simulators

72

All functional-correctness proofs are re-run nightly

(on a cluster of 154 CPUs with a total of 2TB

RAM)

“Bugs introduced today are found tonight and fixed

tomorrow.”

73

Highlighted Strengths of ACL2

• adequate logical expressivity (to capture design

and specs)

• adequate capacity (to manipulate multi-MB

formulas)

• efficient execution (to do 100s of millions of sim

runs)

• automatic proof discovery after typical design

changes (to enable nightly runs)

74

Advantages for Centaur

• high confidence in design correctness (enabling

“riskier” design changes)

• high confidence in inter-generational compatibility

• higher re-use of specifications and modules

• reduced reliance on testing

• reduced time-to-market

75

x86 ISA in ACL2 (Hunt and Goel)

Supports user- and system-level specifications for

the x86 and may serve both to verifying (user- or

system-) binary machine code and as a “build-to”

spec for designers.

Performance:

user level: ∼ 3.3 million ips

system level: ∼ 912,000 ips

76

Other Ongoing Industrial Projects

• AMD (transaction protocols)

• Intel (elliptic curve crypto)

• Kestrel Institute (Android apps)

• Oracle (floating point)

• Rockwell-Collins (LLVN)

• ARM (floating point)

77

Industrial Wish List

• more automation (esp in lemma/defn discovery)

• faster execution speed of models in the logic

• better ways to view large formulas

• scripting capabilities

• ability to build GUIs

78

Things Our Industrial Users Haven’t
Asked For

• quantifiers

• higher-order functions

• strong typing

79

Our Hypothesis

The “high cost” of formal methods

– to the extent the cost is high –

is a historical anomaly due to the fact that virtually

every project for the past 20 years has had to

formalize (parts of) centuries of mathematics and

decades of chip design “shop-lore”

80

The use of mechanized formal methods

• decreases time-to-market,

• increases reliability.

81

Conclusion

Mechanical reasoning systems have changed the

way complex digital artifacts are built.

Complexity not an argument against formal

methods.

It is an argument for formal methods.

82

References
Computer-Aided Reasoning: An Approach,

Kaufmann, Manolios, Moore, Kluwer Academic

Publishers, 2000.

Computer-Aided Reasoning: ACL2 Case Studies,

Kaufmann, Manolios, Moore (eds.), Kluwer

Academic Publishers, 2000.

http://www.cs.utexas.edu/users/moore/acl2

83

Extra Slides

84

The Formal Model of the Code
(defun FDIV (p d mode)

(let*

((sd0 (eround (lookup d) ’(exact 17 8)))

(dr (eround d ’(away 17 32)))

(sdd0 (eround (* sd0 dr) ’(away 17 32)))

(sd1 (eround (* sd0 (comp sdd0 32)) ’(trunc 17 32)))

(sdd1 (eround (* sd1 dr) ’(away 17 32)))

(sd2 (eround (* sd1 (comp sdd1 32)) ’(trunc 17 32)))

...

(qq2 (eround (+ q2 q3) ’(sticky 17 64)))

(qq1 (eround (+ qq2 q1) ’(sticky 17 64)))

(fdiv (round (+ qq1 q0) mode)))

(or (first-error sd0 dr sdd0 sd1 sdd1 ... fdiv)

fdiv)))

85

The K5 FDIV Theorem (1200 lemmas)

“If p and d are 64, , 15+ floating point numbers,

d 6= 0, and mode is an IEEE rounding mode, then

FDIV(p, d,mode) = round(p/d,mode).”

(defthm FDIV-divides

(implies (and (floating-point-numberp p 15 64)

(floating-point-numberp d 15 64)

(not (equal d 0))

(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

[Moore, Kaufmann, Lynch – 1995]

86

A Few of the 1200 AMD Lemmas

Trunc Trunc: If i ≤ j, then

trunc(trunc(x, i), j) = trunc(x, i).

Sticky Enough: If mode is an IEEE rounding mode

with size n < i, then

round(sticky(x, i+ 2),mode) = round(x,mode).

Sticky Plus: Let x 6= 0, such that trunc(x, n) = x

and 1 + e(y) < e(x), and n+ e(y)− e(x) < k.

Then sticky(x+ y, n) = sticky(x+ sticky(y, k), n).

(Some standard hypotheses have been omitted for

brevity.)

87

ACL2 at Centaur (cont’)

Centaur uses ACL2 to build verified custom tools

for its Verilog designers

Such tools can used by ACL2 because of its

metafunction (reflection) capability

Mechanized formal reasoning and theorem proving

are taken for granted

Centaur’s Verilog tool-chain is distributed with

ACL2 and is used by Intel and Oracle

88

Reports on Oracle Usage

89

90

91

92

93

Rockwell Collins Usage

94

ACL2 Support for Industrial Projects

There have been over 1000 changes to ACL2 since

Centaur started using ACL2 in May, 2009. Of

those, these were requested by Centaur:

Changes to Existing Features 95

New Features 44

Heuristic and Efficiency Improvements 22

Bug Fixes 72

Changes at the System Level 18

Total due to Centaur 251

95

Why ACL2 is Successful in Industry

• that was the goal of the project

• efficient, executable logic/programming language

with native verifier

• dual-use bit- and cycle-accurate models

• access to Common Lisp programming (via trust

tags)

• automatic prover with “a human in the loop”

96

• encourages development of domain-specific

automatic provers allowing proof maintenance as

designs evolve

• rugged, well documented, free, open source form,

many useful books, and a fairly unrestrictive

license

• coherent user community devoted to making

mechanized verification practical

97

• industry needs help: their designs are too

complicated to get right without mechanized

reasoning

98

How Do We Know ACL2 is Sound?

“Trust us!” – Kaufmann and Moore

Obviously, we would like to prove it correct.

But with what prover?

99

Meaning of Correctness

π

Yes No

������
������
������
������
������

������
������
������
������
������

Proof Checker

φ

Theorem Prover

Proof Generator

100

Plan

Π

Yes No

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Proof Checker

‘‘I am correct’’

Theorem Prover

Proof Generator

• Prove “I am correct” with

Theorem Prover

• Generate that proof Π

• Check Π with Proof Checker

• Never generate another low-level

proof

101

Jared Davis’ Stack “Milawa”
Level

 2 Propositional reasoning

 3 Rules about primitive functions

 4 Miscellaneous ground work

 7 Case splitting

 9 Evaluation and unconditional rewriting

10 Conditional rewriting

11 Induction and other tactics

 5 Assumptions and clauses

 6 Factoring, splitting help

 8 Audit trails (in prep for rewriting)

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

 1 Primitive proof checker

102

