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Introduction

The coursework for Automated Reasoning is designed to test and help to
develop your understanding and practical skills using the interactive theorem
prover Isabelle/HOL.

Part 1 consists of a set of exercises involving the use of basic inference rules
in Isabelle/HOL. You will have to prove simple theorems in propositional and
first order logic.

In Part 2 you will have to prove more complex theorems about miscella-
neous mathematical concepts. Thankfully, you will also be granted access to
more powerful reasoning tools!

In Part 3 you will delve into some simple formalisations of geometry in
Isabelle/HOL. You will be asked to formalise axiomatic systems for geometry
and prove theorems resulting from these axioms. Moreover, you will explore
some surprising models for these axiomatic systems, which give rise to a fas-
cinating area of mathematics: finite geometries.

To get started, download the file practical.thy from:

http://www.inf.ed.ac.uk/teaching/courses/ar/



Essential Reading

As you will be using Isabelle interactively, you will need to be familiar with
the system before you start. Formal mathematics is not triviall You will find
this assignment much easier if you attend the lectures, attempt the various
[sabelle exercises given on the course webpages, and ask questions about
using Isabelle before you start. You can find a lot of useful information on
using Isabelle in the Isabelle/HOL tutorial, located at:

http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/
Isabelle2016/doc/tutorial.pdf,

In particular, Chapter 5 has a lot of information on all the basic reasoning
tools and rules. Moreover, Chapter 6 contains some information about the
representation of Sets and Functions in Isabelle/HOL.

You may also find it very useful to take a look at Chapter 5 of Con-
crete Semantics, where a clear overview of declarative (structured) proofs is
presented:

http://www.concrete-semantics.org/concrete-semantics.pdf.

Part 1: Some propositional and first-order proofs

[15%]

For the first part of this assignment, you should attempt to prove a number
of simple propositional and first-order statements in Isabelle.

For this part of the assignment use only the following proof methods: rule,
rule tac, drule, drule tac, erule, erule tac, frule, frule tac and assumption.
You are also restricted to using only the introduction and elimination rules
taught in lectures (e.g. conjl, conjE, exl, allE, ccontr) in the usual procedural
style (a sequence of rule applications).

You should also be aware of the tactic cut tac, which inserts a known
rule or fact as an assumption in your proof. For example, the known fact:

excluded middle: “= P v P”
can be inserted as an assumption in your proof by using the command

apply (cut_tac excluded middle)



If you wish to rename the variable P, to A say, then you can simply give the
command

apply (cut_tac P=A in excluded middle)

If you are struggling to mechanize a lemma or theorem in Isabelle, then
the command sorry can be used. This allows the lemma or theorem to be
asserted as true without completing the proof. It will enable you to make
progress in the practical, however no marks will be allocated for the missing
part of the proof. You should not use other people’s proofs or formalisations.

Prove the following statements:

. P—Q)— (P— Q) — (P— R) (2 marks)
2 (P—QF((R— S)APAR—QAS (2 marks)
3. (AP A-Q) +— =(PV Q) (3 marks)
4. =(Fz. ~Pz)FVz. P (3 marks)

For the next problem, you are also allowed to use any rules you proved
in the previous exercises (in addition all the rules taught in lectures):

5. Jz. (drunk z — (Vy. drunk y)) (5 marks)

Hint: To use a rule, you first have to give it a name. For example, if you
have proved a statement myrule: P F @, and later you find A - (Q as a goal
in the proof of another theorem, writing apply (rule myrule) will yield A+ P
as a new goal.

Part 2: Structured proofs & powerful reasoning
tools [25%]

In this part of the assignment you are asked to prove some more complex the-
orems of mathematical miscellanea. For this purpose, you are given access to
some of Isabelle’s more powerful reasoning tools. Specifically, you can use the
tactics: auto, simp, blast, fast, force, fastforce, presburger, algebra,
unfold, induction, as well as all the methods from Part 1. Moreover, now



you can write proofs in Isabelle’s declarative (structured proof) style:

theorem x:
proof ---
assume - - -

show - - -
ged

For this part you are not allowed to use the tactics metis, meson or smt,
unless explicitly stated. You can use the tools sledgehammer, try and try0
to suggest methods, but take into account that if they suggest you to use
metis, meson or smt you should then find an alternative proof.

Problem 6 (3 marks). Recall that 3x.Vy. P 2y implies Vy. 3x. P x y. How-
ever, it is not necessarily the case that Vy. dx. P x y implies dz. Vy. P x y. This
fact is captured by the sentence =VP. (Vy. 3z. Pxy — Jz.Vy. P xy), which
you have to prove, assuming that the universe is the domain of integer num-
bers. The first step of the proof (an application of the tactic simp) is given,
which you will see yields the goal 3P. (Vy. Jx. Pxy) A (Va.Jy. =P zy). You
have to write the rest of the proof in declarative style.

Problems 7, 8, 9 (2, 3, 3 marks respectively). For these problems a
relation Ry, is defined (given). This relation is such that two integers are re-
lated by Ry if and only if 12 divides their difference. You have to prove that
Ry is reflexive (Problem 7), symmetric (Problem 8) and transitive (Problem
9). Some steps in these proofs are given. You have to write the rest of the
proofs in declarative style.

For the next few problems you will need to define primitive recursive
functions using Isabelle’s command primrec. You should have in mind that if
a function f is defined using primrec then Isabelle creates simplification rules
f.simps. These rules are equalities which are incorporated automatically into
the workings of tactics simp and auto.

Problem 10 (2 marks). You have to define a function gauss _sum where

gauss sumn=14+24---+n.



You need to give this definition recursively using the command primrec. Thus,
you need to define it for two cases: when the argument is 0 and when the
argument is the successor of something. You are given the structure of this
definition and you only need to fill the missing parts. After you have defined
the function, you need to state and prove the theorem 2(gauss sum n) =
n(n + 1). Here, you can use the tactic induction. You can complete this
proof either in declarative or procedural (sequence of tactic applications)
style.

Problem 11 (2 marks). Like above, you have to define a function
sum_of odds using the command primrec. Define it so that sum_of odds n
is the sum of the first n odd numbers. After you have defined it, state and
prove the theorem sum of odds n = n?. You can use induction.

Problem 12 (5 marks). For this problem the primitive recursive definition
of the function power sum is given. Specifically, it is such that

power sumnm = (n—1)+ (n—1)n'+(n—1)n*+--+ (n — 1)n™.

You have to prove that if n > 0 then power sum nm = n™" — 1. You can
build this proof either declaratively or procedurally. This problem is hard
because the natural number definition of subtraction (“minus”) in Isabelle is
such that if @ < b then a—b = 0. A consequence of this is that (a —b) + ¢ will
not necessarily equal (a + ¢) — b. Thus, you might find it hard to translate
your intuitions into a working proof.

In traditional mathematical writing it is common to show a = d with a
‘chain’ of equalities, as follows:

a=1b
=c

Behind the scenes of such a proof, one is proving the chained equalities a = b,
b = cand ¢ = d and implicitly using the transitivity of equality to show a = d.
The equivalent way of writing this pattern inside an Isabelle declarative proof
is:

€¢

have a = b’ by (some method)
moreover have ‘... = ¢’ by (some method)
moreover have ‘... = d”’ by (some method)
ultimately show ‘a = d’’ by auto



The dots ‘...” allow you to avoid writing terms redundantly. The keyword
moreover collects a bunch of facts (in this case the facts are the equalities
in the chain), and the keyword ultimately uses all of the collected facts to
be used in the proof of the following statement. In this case, they will be
chained equalities, which will allow auto to prove a = d by transitivity.

For Problem 12 you may want to write (on paper) a proof in the tradi-
tional chained style, and then try to formalise it in Isabelle using the hint
above. If you cannot link two consecutive steps in the chain, try adding a
helpful intermediate step.

Problem 13 (5 marks). If all the elements of a set are equal, then the
set’s cardinality cannot be greater than 1. Here you are asked to prove this
statement. You can construct this proof either declaratively or procedurally.
For this problem you can use any tactic except smt. Hint: given an existence
theorem dx. P x, you can use the command obtain in a declarative proof to
introduce an element that satisfies P.

Part 3: Reasoning about Geometries [60%)]

Geometry has a long history of being presented and represented in terms
of axiomatic systems. Here you will work with one axiomatisation which
conceives the geometric plane as a set (of points), and lines as sets of points
(of the plane). For these concepts to match our geometric intuitions, some
axioms must be satisfied. We represent this in terms of Isabelle’s locales.

For the proofs in this section you can use any tactic except smt. You
can choose whether you want to construct proofs declaratively or procedu-
rally (or mixed, if you need it). Note that structured proofs (declarative) are
more congenial to formalised mathematics, and more similar to how math-
ematicians tend to present their arguments. You can also use the help of
sledgehammer, try and tryQ.

A locale called Simple Geometry is declared, with a pair of constants
‘plane’ and ‘lines’. The first three axioms (A1, A2 and A3) are given. They
state that the plane is not empty (A1), that every line is a non-empty subset
of the plane (A2), and that for every pair of points in the plane there is a
line that contains both (A3).



Problem 14 (2 marks). Using the same syntax used for the first three
axioms, formalise Axioms 4 and 5:!

A4: Two different lines intersect in no more than one point.”
Ab5: For every line L there is a point in the plane outside of L.

As you may notice, these 5 axioms are not everything we will be using.
In fact, by defining the plane as a set, and lines as subsets of it, we inherit
results from the theory Set of Isabelle/HOL. In fact, we inherit everything
from Isabelle’s Main theory. This background allows us to use various lemmas
(e.g., those that sledgehammer may suggest), and makes tactics like simp
and auto quite powerful.

Given these axioms we can start proving some basic theorems. For some
theorems the statement is given and you only have to find the proof. For
some theorems you have to both formalise the statement and find the proof.

As a general hint, consider that every theorem that you prove can be
used as a lemma for constructing the proof of another theorem. Moreover,
if you get stuck in one proof you can skip it by writing the command sorry
(in place of proof methods). Naturally, you cannot get full marks for a proof
that contains sorry. However, you can get partial marks for it, and it allows
you to move on with the rest of the assignment. Moreover, sorry can be used
so that you can pretend that you have completed the proof. In other words,
sorry is like an (invalid) inference rule that allows you to prove anything.
Therefore, if you use sorry in the proof of one lemma you can use that lemma
afterwards in the proof of something else, as if it was a proven fact. Thus, you
must be very careful not to use sorry in a false statement, as this will result
in the introduction of an inconsistency (and recall that, in classical logic, any
inconsistency allows you to prove everything!). You should know that if you
use sorry in the solution of a problem P we will penalise your marks for P,

'Be very, very careful with the way that you formalise these axioms. The wrong ax-
iomatisation can make the locale too weak (it does not entail certain necessary properties),
too strong (it entails more than we are asking), inefficient (it is difficult to reason with it)
or outright inconsistent (it entails a contradiction!). If any of these things happen, marks
will be deducted proportionally to the magnitude of the problem. Furthermore, it may
make it very hard for you to move forward in the assignment.

2We recommend that you do not use the function card of Isabelle for this axiom. In
Isabelle, the cardinality of infinite sets is defined as 0, so using card may have unintended
disastrous consequences (e.g., allowing different lines to intersect in an infinite number of
points).



but only once. Thus, if you use P as a lemma for the proof of a problem
@, we will not take marks off (); unless P introduces an inconsistency. If
you introduce an inconsistency then we will take off marks every time that
inconsistency is used, even if unknowingly (e.g., by one of the automatic
reasoning tools).

Problem 15 (1 mark). State the fact that there exists at least one line
and prove it.

Problem 16 (2 marks). Prove that there exist at least two different points
in the plane (the statement is given).

Problem 17 (3 marks). Prove that there exist at least three different
points in the plane (the statement is given).?

Problem 18 (3 marks). Prove that the cardinality of the plane is greater
than 3 (if the plane is finite, because recall that card of infinite sets is 0!).

One of the interesting results of our simple axiomatisation of geometry
is that there exist models of simple geometry which only contain a finite
number of points.

Problem 19 (2 marks). We have proved that there are at least 3 points.
Now we will show that there is a model of Simple Geometry with no more
than three points! Using the command interpretation, give a model of Simple
Geometry where the plane has only 3 elements. Hint: the points can be
anything, e.g., integers®. This command will ask you to prove that the 5
axioms are satisfied by your given model. It should be easy to show that it
is the case.

Problem 20 (5 marks). Suppose you have a line [ and two different points
a and b on it. Suppose that you have a point p outside of [. Let n be the
line which contains both a and p, and let m be the line that contains both

3Notice the use of predicate distinct, which applies to lists. It simply generalises the
notion given by # to various items. Specifically, it means that for every pair a, b of items
in the list a # b.

4If you want to use numerals (integers or naturals) as the ‘points’ of the plane, be sure
to specify their type, e.g., by writing, ‘2::int’. Otherwise, Isabelle will not know facts
such as 2 # 1 (in Isabelle, numerals can be such that 2 = 1, because these may represent
objects other than integers or naturals).



b and p. Prove that the lines n and m are different.” Hint: Prove it by
contradiction. Assume that m and n are the same. Then notice that m must
intersect [ in two points (¢ and b). From this conclude that m = [ and use
this to show that p is in [. Show that this contradicts your assumptions. See
figure 1 if it helps you to visualise it.

Figure 1

Problem 21 (4 marks). Suppose you have a line [ and two points a and b
on it. Suppose that you have a point p outside of [. Let n be the line which
contains both a and p, and let m be the line that contains both b and p. Let
¢ be a point on n different from p, and let d be any point on m. Prove that
c and d are different. See figure 2.

Figure 2

5For this problem the statement is given in terms of the keywords assumes and shows.

Recall that within the proof you can invoke the whole collection of assumptions with the

name assms. To invoke individual assumptions (e.g., the ith) write assms(i).



Notice that the 5 axioms of Simple Geometry do not specify anything
about parallel lines. Interestingly, there are models of this Geometry where
there are no parallel lines (every two lines intersect). These are called pro-
jective geometries. Conversely, there are other models of Simple Geometry
where there are some parallel lines or even too many of them! We will explore
briefly what happens if we add the requirement that parallels must exist. We
call this Non-Projective Geometry, and we define it as a new locale. Notice
that we define it as an extension of Simple Geometry. Doing this allows us
to use every theorem of Simple Geometry in Non-Projective Geometry.

Problem 22 (1 mark). Formalise an axiom which captures the following:
if a point p lies outside of a line | then there must exist at least one line m
that passes through p, which does not intersect .

Problem 23 (2 mark). Give a model of Non-Projective Geometry where
the plane has 4 points. Use the command interpretation to show that it is
indeed a model.

Problem 24 (3 marks). Formalise the statement it is not true that every
pair of lines intersect in a point. Prove it.

Enough of Non-Projective Geometries! Now let us define a new locale
Projective Geometry, which includes two extra axioms. The first one states
that every two lines intersect in a point (A6), and the second one states that
there are at least three points (A7). The formalisation of these statements is
given. Do not change them. Now we will prove some theorems in Projective
Geometry.

Problem 25 (3 marks). You are asked to prove an alternative version of
axiom A7. The statement is given. Naturally, you should use A7 in the
proof.

Problem 26 (3 marks). You are asked to prove yet another alternative to
axiom A7. The statement is given.

Problem 27 (5 marks). For every point in the plane there are at least two
lines that pass through it. The statement is given and you have to give a
proof.



Problem 28 (4 marks). For every point in the plane, there is one external
line. The statement is given and you have to give a proof.

Notice that this fact is analogous to axiom A5, which states that for every
line there is a point outside of it.

Problem 29 (6 marks). For every point p in the plane, there are at least
three lines that pass through it. See figure 3 for an idea on how to prove this.

Notice that this fact is analogous to axiom A7, which states that every
line contains at least three points.

Figure 3: If you find a line h and three different points a, b and c that lie
on it you may be able to prove that their respective lines [, m and n are
different. Can you? Maybe you need the objects in the figure to satisfy some
extra properties!

Fun fact: the theorems proved for problems 28 and 29 show a duality be-
tween some facts of projective geometry, which results from swapping points
for lines and lines for points. The extent of this duality is even stronger. For
example, notice that axiom A3 states that every two points have one line
in common. Interestingly, its dual statement is axiom A6, which states that
every two lines have one point in common. Moreover, axiom A4 is its own

dual!

Problem 30 (8 marks). Prove that there are at least 7 points on the plane.
This implies, in particular, that there are no models of Projective Geom-
etry with fewer than 7 points. But, is there a model with 77

Problem 31 (3 marks). Give a model of Projective Geometry with exactly
7 points.



Demonstrator Hours

The demonstrator, Daniel Raggi (D.Raggi@sms.ed.ac.uk), will be available
to give advice on Mondays from 9am-1lam in 1 FH (Forrest Hill) Room
3.D02, or any time by email.

Submission

By 4pm on 21th November 2016 you must submit your solution in electronic
form. This should consist of your theory file practical.thy and can be submit-
ted using the command:

submit ar 1 practical.thy

Late coursework will be penalised in accordance with the Informatics
standard policy. Please consult your course guide for specific information
about this. Also note that, while we encourage students to discuss the prac-
tical among themselves, we take plagarism seriously and any suspected case
will be treated appropriately. Please consult your student guide for more in-
formation about this matter.



