
Write your own Theorem Prover

Phil Scott

27 October 2016

Phil Scott Write your own Theorem Prover 27 October 2016 1 / 31



Introduction

We’ll work through a toy LCF style theorem prover for classical
propositional logic. We will:

review the LCF architecture
choose a logic
write the kernel
derive basic theorems/inference rules
build basic proof tools
write a decision procedure

Phil Scott Write your own Theorem Prover 27 October 2016 2 / 31



What is LCF?

A design style for theorem provers.
Follows the basic design of Logic of Computable Functions (Milner,
1972).
Examples: HOL, HOL Light, Isabelle, Coq.
Syntax given by a data type whose values are logical terms.
There is an abstract type whose values are logical theorems.
Basic inference rules are functions on the abstract theorem type.
Derived rules are functions which call basic inference rules.

Phil Scott Write your own Theorem Prover 27 October 2016 3 / 31



What is Classical Propositional Logic (informally)

Syntax:
Variables P,Q, . . . ,R and connectives ¬,∨,∧,→,↔
Terms/formulas: P, ¬P, P ∨ Q, P ∧ Q, P → Q, P ↔ Q

Semantics
Truth values > and ⊥ assigned to variables
Connectives evaluate like “truth-functions"; e.g. > ∨⊥ = >
Theorems are terms which always evaluate to > (tautologies)

Proof Theorems can be found by truth-table checks, DPLL
proof-search, or by applying rules of inference to axioms.

Phil Scott Write your own Theorem Prover 27 October 2016 4 / 31



An inference system for propositional logic

Given an alphabet α, a term is one of
a variable v ∈ α
a negation ¬φ for some formula φ (we take → to be right-associative)
an implication ψ → φ for formulas φ and ψ

A theorem is one of
Axiom 1 φ→ ψ → φ for terms φ and ψ
Axiom 2 (φ→ ψ → χ)→ (φ→ ψ)→ (φ→ χ) for terms φ, ψ

and χ
Axiom 3 (¬φ→ ¬ψ)→ ψ → φ for terms φ and ψ

Modus Ponens a term ψ whenever φ and φ→ ψ are theorems

Phil Scott Write your own Theorem Prover 27 October 2016 5 / 31



The Kernel (syntax)

Formally
Given an alphabet α, a term is one of

a variable v ∈ α
an implication ψ → φ for formulas φ and ψ (we take → to be
right-associative)
a negation ¬φ for some formula φ

Really Formally
infixr 1 :=>:

data Term a = Var a
| Term a :=>: Term a
| Not (Term a)
deriving Eq

Phil Scott Write your own Theorem Prover 27 October 2016 6 / 31



Theorems

axiom1 :: a -> a -> Theorem a
axiom1 p q = Theorem (p :=>: q :=>: p)

axiom2 :: a -> a -> a -> Theorem a
axiom2 p q r =

Theorem ((p :=>: q :=>: r) :=>: (p :=>: q) :=>: (p :=>: r))

axiom3 :: a -> a -> Theorem a
axiom3 p q = Theorem ((Not p :=>: Not q) :=>: q :=>: p)

mp :: Eq a => Theorem a -> Theorem a -> Theorem a
mp (Theorem (p :=>: q)) (Theorem p') | p == p' = Theorem q

Phil Scott Write your own Theorem Prover 27 October 2016 7 / 31



Securing the Kernel

module Proposition (Theorem, Term(..), termOfTheorem,
axiom1, axiom2, axiom3, mp ) where

The Theorem type does not have any publicly visible constructors. The
only way to obtain values of Theorem type is to use the axioms and
inference rule.

Phil Scott Write your own Theorem Prover 27 October 2016 8 / 31



First (meta) theorem

Theorem
For any term P, P → P is a theorem.

Proof.
Take φ and χ to be P and ψ to be P → P in Axioms 1 and 2 to get:

1 P → (P → P)→ P
2 (P → (P → P)→ P)→ (P → P → P)→ (P → P)

Apply modus ponens to 1 and 2 to get:
3 (P → P → P)→ P → P

Use Axiom 1 with /phi and /psi to be P to get:
4 (P → P → P)

Apply modus ponens to 3 and 4.

Phil Scott Write your own Theorem Prover 27 October 2016 9 / 31



First meta theorem formally

Metaproof
theorem :: Eq a => Term a -> Theorem a
theorem p =

let step1 = axiom1 p (p :=>: p)
step2 = axiom2 p (p :=>: p) p
step3 = mp step2 step1
step4 = axiom1 p p

in mp step3 step4

Example
> theorem (Var "P")
Theorem (Var "P" :=>: Var "P")

>

Phil Scott Write your own Theorem Prover 27 October 2016 10 / 31



Issues

How many axioms are there?

axiom1 :: a -> a -> Theorem a

How many theorems did we just prove?

theorem :: Eq a => Term a -> Theorem a

Why could this be a problem for doing formal proofs?

Phil Scott Write your own Theorem Prover 27 October 2016 11 / 31



A more(?) efficient axiomatisation

(p,q,r) = (Var 'p', Var 'q', Var 'r')
axiom1 :: Theorem Char
axiom1 = Theorem (p :=>: q :=>: p)

axiom2 :: Theorem Char
axiom2 = Theorem ((p :=>: q :=>: r)

:=>: (p :=>: q) :=>: (p :=>: r))

axiom3 :: Theorem Char
axiom3 = Theorem ((Not p :=>: Not q) :=>: q :=>: p)

instTerm :: (a -> Term b) -> Term a -> Term b
instTerm f (Var x) = f x
instTerm f (Not t) = Not (instTerm f t)
instTerm f (a :=>: c) = instTerm f a :=>: instTerm f c

inst :: (a -> Term b) -> Theorem a -> Theorem b
inst f (Theorem x) = Theorem (instTerm f x)

Phil Scott Write your own Theorem Prover 27 October 2016 12 / 31



Metaproof again

truthThm =
let inst1 = inst (\v -> if v == 'q' then p :=>: p else p)

step1 = inst1 axiom1
step2 = inst1 axiom2
step3 = mp step2 step1
step4 = inst (const p) axiom1

in mp step3 step4

> theorem
Theorem (Var 'P' :=>: Var 'P')

Phil Scott Write your own Theorem Prover 27 October 2016 13 / 31



Derived syntax

infixl 4 \/
infixl 5 /\

-- | Syntax sugar for disjunction
(\/) :: Term a -> Term a -> Term a
p \/ q = Not p :=>: q

-- | Syntax sugar for conjunction
(/\) :: Term a -> Term a -> Term a
p /\ q = Not (p :=>: Not q)

-- | Syntax sugar for truth
truth :: Term Char
truth = p :=>: p

-- | Syntax sugar for false
false :: Term Char
false = Not truth

Phil Scott Write your own Theorem Prover 27 October 2016 14 / 31



A proof tool: the deduction [meta]-theorem

Why did we need five steps to prove P → P . Can’t we just use conditional
proof?

1 Assume P .
2 Have P .

Hence, P → P .

Deduction Theorem
From {P} ∪ Γ ` Q, we can derive Γ ` P → Q.

But Our axiom system says nothing about assumptions!

Phil Scott Write your own Theorem Prover 27 October 2016 15 / 31



A DSL for proof trees with assumptions

Syntax
data Proof a = Assume (Term a)

| UseTheorem (Theorem a)
| MP (Proof a) (Proof a)

deriving Eq

Semantics
-- Convert a proof tree to the form Γ ` P
sequent :: (Eq a, Show a) => Proof a -> ([Term a], Term a)
sequent (Assume a) = ([a], a)
sequent (UseTheorem t) = ([], termOfTheorem t)
sequent (MP pr pr') =

let (asms, p :=>: q) = sequent pr
(asms', _) = sequent pr' in

(nub (asms ++ asms'), q)

Phil Scott Write your own Theorem Prover 27 October 2016 16 / 31



A DSL for proof trees with assumptions

Semantics
-- Send {P} ∪ Γ ` Q to Γ ` P → Q
discharge :: (Ord a, Show a) => Term a -> Proof a -> Proof a

-- Push a proof through the kernel
verify :: Proof a -> Theorem a

The implementation of ‘discharge‘ follows the proof of the deduction
theorem!

Phil Scott Write your own Theorem Prover 27 October 2016 17 / 31



Example with DSL

We want:
inst2 :: Term a -> Term a -> Theorem a -> Theorem a

-- ` ¬P → P → ⊥
lemma1 =

let step1 = Assume (Not p)
step2 = UseTheorem (inst2 (Not p) (Not (false P)) axiom1)
step3 = MP step2 step1
step4 = UseTheorem (inst2 (false P) p axiom3)
step5 = MP step4 step3

in verify step5

> lemma1
Theorem (Not (Var 'P') :=>: Var 'P'

:=>: Not (Var 'P' :=>: Var 'P'))

Phil Scott Write your own Theorem Prover 27 October 2016 18 / 31



Embedding Sequent Calculus

Assumption carrying proofs
We’d like to work with proofs of the form Γ ` P without needing a
DSL and a separate verification step.
We can identify a sequent P1,P2, . . . ,Pn ` P with the implication
P1 → P1 → · · · → Pn → P
We just need to keep track of n:

data Sequent a = Sequent Int (Theorem a)

Phil Scott Write your own Theorem Prover 27 October 2016 19 / 31



Sequent inference

Modus Ponens on Sequents
Given the sequents

Γ ` P → Q and ∆ ` P ,

we can derive the sequent

Γ ∪∆ ` Q.

Challenge: The union Γ ∪∆ must be computed in the derivation of this
rule.

Phil Scott Write your own Theorem Prover 27 October 2016 20 / 31



Example

Suppose we want to perform Modus Ponens on
P1,P2,P3 ` P → Q and P1,P3,P4 ` P

where Pi < Pj for i , j ∈ {1, 2, 3, 4}.

That is, on:
(3,P1 → P2 → P3 → (P → Q))

and

(3,P1 → P3 → P4 → P).

Goal:
(4,P1 → P2 → P3 → P4 → Q).

Phil Scott Write your own Theorem Prover 27 October 2016 21 / 31



Computation by conversion

First, use Axiom 1 to add extra conditions on the front of both theorems.

P4 → P1 → P2 → P3 → (P → Q)

and

P2 → P1 → P3 → P4 → P

Phil Scott Write your own Theorem Prover 27 October 2016 22 / 31



Computation by conversion

Using

(P → Q → R)↔ (Q → P → R)

we have

P4 → P1 → P2 → P3 → (P → Q)

↔P1 → P4 → P2 → P3 → (P → Q)

↔P1 → P2 → P4 → P3 → (P → Q)

↔P1 → P2 → P3 → P4 → (P → Q)

and

P2 → P1 → P3 → P4 → P

↔P1 → P2 → P3 → P4 → P

Phil Scott Write your own Theorem Prover 27 October 2016 23 / 31



Computation by conversion

Using

(P → Q → R)↔ (P ∧ Q → R)

we have

P1 → P2 → P3 → P4 → (P → Q)

↔P1 ∧ P2 → P3 → P4 → (P → Q)

↔P1 ∧ P2 ∧ P3 → P4 → (P → Q)

↔P1 ∧ P2 ∧ P3 ∧ P4 → (P → Q)

and

P1 → P2 → P3 → P4 → P
↔P1 ∧ P2 → P3 → P4 → P
↔P1 ∧ P2 ∧ P3 → P4 → P
↔P1 ∧ P2 ∧ P3 ∧ P4 → P

Phil Scott Write your own Theorem Prover 27 October 2016 24 / 31



Computation by conversion

Using axiom 2 and modus ponens, we can then obtain

P1 ∧ P2 ∧ P3 ∧ P4 → R

Then using

(P → Q → R)↔ (P ∧ Q → R)

we have

P1 ∧ P2 ∧ P3 ∧ P4 → R
↔P1 ∧ P2 ∧ P3 → P4 → R
↔P1 ∧ P2 → P3 → P4 → R
↔P1 → P2 → P3 → P4 → R

Phil Scott Write your own Theorem Prover 27 October 2016 25 / 31



Conversions

A conversion is any function which sends a term φ to a list of
theorems of the form ` φ↔ ψ.
The most basic conversions come from equivalence theorems:

Given a theorem of the form ` φ↔ ψ, we have a conversion which:
accepts a term t
tries to match t against φ to give an instantiation θ
returns ` φ[θ] ↔ ψ[θ].

For example:
the theorem p ↔ p yields a conversion called allC
the theorem (x ↔ y) ↔ (y ↔ x) yields a conversion called symC
the theorem (P → Q → R) ↔ (P ∧ Q → R) yields a conversion called
uncurryC

Phil Scott Write your own Theorem Prover 27 October 2016 26 / 31



Conversionals

Functions which map conversions to conversions are called
conversionals.
Examples include:

antC converts only the left hand side of an implication
conclC converts only the right hand side of an implication

negC converts only the body of a negation
orElseC tries a conversion and, if it fails, tries another

thenC applies one conversion, and then a second to the results
sumC tries all conversions and accumulates their results

With these conversionals, we can algebraically construct more and
more powerful conversions, implementing our own strategies for
converting a term, such as those we need for embedding sequent
calculus.

Phil Scott Write your own Theorem Prover 27 October 2016 27 / 31



Truth Table Verification informally

We nominate a fresh proposition variable X and define > ≡ X → X .
Given a proposition, we recurse on the number of other variables.
Base case: the only variable is X . Evaluate the term according to
truth table definitions for each connective. If we evaluate to >, we
have a tautology.
Recursive case: there are n variables other than X . Take the first
variable P and consider the two cases P = > and P = ⊥. Substitute
in these cases and verify that we have a tautology. If so, the original
proposition is a tautology.

Phil Scott Write your own Theorem Prover 27 October 2016 28 / 31



Truth Table Verification for our Sequent Calculus

Derive a rule for case-splitting:

Γ ∪ {P} ` A ∆ ∪ {¬P} ` A
Γ ∪∆ ` A

Derive theorems for evaluating tautologies:
> → > ↔ >
> → ⊥ ↔ ⊥
⊥ → ⊥ ↔ >
⊥ → ⊥ ↔ >
¬> ↔ ⊥
¬⊥ ↔ >

Derive P ` P ↔ > and ¬P ` P ↔ ⊥

Phil Scott Write your own Theorem Prover 27 October 2016 29 / 31



Truth Table Verification for our Sequent Calculus

Derive a conversion for fully traversing a proposition:

depthC :: Conv a -> Conv a
depthC c = tryC (antC (depthC c))

`thenC` tryC (conclC (depthC c))
`thenC` tryC (notC (depthC c))
`thenC` tryC c

Use the conversion and our evaluation rules to fully evaluate a
proposition with no variables other than X . If we end up at >, we can
then use the derived rule

Γ ` P = >
Γ ` P

Wrap up in a verifier (and so claim our axioms complete):

tautology :: Term a -> Maybe (Theorem a)

Phil Scott Write your own Theorem Prover 27 October 2016 30 / 31



Summary

In LCF, we use a host language (ML, Haskell, Coq etc. . . ) to secure
and program against a trusted core.
A bootstrapping phase is usually required to get to the meat.
We can often follow textbook mathematical logic here, but we do have
to worry about computational efficiency.
We can embed richer logics inside the host logic (e.g. a proof tree
DSL or a sequent calculus)
Combinator languages can be used to craft strategies (for conversion,
solving goals with tactics)
With conversions at hand, problems can be converted to a form where
we can implement decision procedures and other automated tools for
proving theorems (resolution proof, linear arithmetic, computation of
Grobner bases etc. . . )

Phil Scott Write your own Theorem Prover 27 October 2016 31 / 31


