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Introduction

We'll work through a toy LCF style theorem prover for classical
propositional logic. We will:

review the LCF architecture

choose a logic

write the kernel

derive basic theorems/inference rules

build basic proof tools

write a decision procedure
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What is LCF?

A design style for theorem provers.

Follows the basic design of Logic of Computable Functions (Milner,
1972).

Examples: HOL, HOL Light, Isabelle, Coq.
Syntax given by a data type whose values are logical terms.
There is an abstract type whose values are logical theorems.

Basic inference rules are functions on the abstract theorem type.

Derived rules are functions which call basic inference rules.
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What is Classical Propositional Logic (informally)

@ Syntax:

e Variables P, Q, ..., R and connectives =, V, A, —, <>
o Terms/formulas: P, =P, PV Q, PAQ, P - Q, P+ Q

@ Semantics

o Truth values T and L assigned to variables
o Connectives evaluate like “truth-functions"; eg. TV L =T
e Theorems are terms which always evaluate to T (tautologies)

@ Proof Theorems can be found by truth-table checks, DPLL
proof-search, or by applying rules of inference to axioms.
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An inference system for propositional logic

@ Given an alphabet «, a term is one of
e a variable v € «
e a negation —¢ for some formula ¢ (we take — to be right-associative)
e an implication ¥ — ¢ for formulas ¢ and ¥
@ A theorem is one of
Axiom 1 ¢ — 1) — ¢ for terms ¢ and )

Axiom 2 (¢ — b = x) = (¢ = ¥) — (¢ — x) for terms ¢, ¢
and y

Axiom 3 (=¢ — —p) — 1) — ¢ for terms ¢ and 1)
Modus Ponens a term v whenever ¢ and ¢ — 1) are theorems
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The Kernel (syntax)

Formally

Given an alphabet «, a term is one of
@ a variable v € «

@ an implication ¢y — ¢ for formulas ¢ and ¢ (we take — to be
right-associative)

@ a negation —¢ for some formula ¢

Really Formally

infixr 1 :=>:

data Term a = Var a
| Term a :=>: Term a
| Not (Term a)
deriving Eq

v

Phil Scott Write your own Theorem Prover 27 October 2016 6 /31



Theorems

axioml :: a -> a -> Theorem a
axioml p q = Theorem (p :=>: q :=>: p)

axiom2 :: a -> a -> a -> Theorem a
axiom2 p q r =

Theorem ((p :=>: q :=>: 1) :=>: (p :=>: q) :=>: (p :=>: 1))

axiom3 :: a -> a -> Theorem a
axiom3 p q = Theorem ((Not p :=>: Not q) :=>: q :=>: p)

mp :: Eq a => Theorem a -> Theorem a -> Theorem a
mp (Theorem (p :=>: q)) (Theorem p') | p == p' = Theorem q

Phil Scott Write your own Theorem Prover 27 October 2016 7/31



Securing the Kernel

module Proposition (Theorem, Term(..), termOfTheorem,
axioml, axiom2, axiom3, mp ) where

The Theorem type does not have any publicly visible constructors. The

only way to obtain values of Theorem type is to use the axioms and
inference rule.
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First (meta) theorem

For any term P, P — P is a theorem.

Take ¢ and x to be P and ¢ to be P — P in Axioms 1 and 2 to get:

QP (P—>P)—P
Q@ P—>P—>P)-P)=»(P—>P—=>P)—=(P—P)
Apply modus ponens to 1 and 2 to get:

QP—-P—-P)—>P—>P
Use Axiom 1 with /phi and /psi to be P to get:

Q(P—-P—P)

Apply modus ponens to 3 and 4. O

V.
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First meta theorem formally

theorem :: Eq
theorem p =

let stepl =

step2 =

step3 =

stepd =

in mp step3

a => Term a -> Theorem a

axioml p (p :=>: p)
axiom2 p (p :=>: p) p
mp step2 stepl

axioml p p

step4

> theorem (Var "P")
Theorem (Var "P" :=>: Var "P")

>
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ISYIES

@ How many axioms are there?
axioml :: a -> a -> Theorem a

e How many theorems did we just prove?
theorem :: Eq a => Term a -> Theorem a

@ Why could this be a problem for doing formal proofs?
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A more(?) efficient axiomatisation

(p,q,r) = (Var 'p', Var 'q',
axioml :: Theorem Char
axioml = Theorem (p :=>: q :=>: p)

Var 'r')

axiom2 :: Theorem Char
axiom2 = Theorem ((p :=>: q :=>: r)
:=>: (p :=>: q) :=>: (p :=>: r))

axiom3 :: Theorem Char
axiom3 = Theorem ((Not p :=>: Not q) :=>: q :=>: p)

instTerm :: (a -> Term b) -> Term a -> Term b
instTerm f (Var x) =f x
instTerm f (Not t) = Not (instTerm f t)

instTerm f (a :=>: c¢) = instTerm f a :=>: instTerm f c

inst :: (a -> Term b) -> Theorem a -> Theorem b
inst f (Theorem x) = Theorem (instTerm f x)
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Metaproof again

truthThm =
let instl = inst (\v -> if v == 'q' then p :=>: p else p)
stepl = instl axioml
step2 = instl axiom2
step3 = mp step2 stepl
step4 = inst (const p) axioml
in mp step3 step4

> theorem
Theorem (Var 'P' :=>: Var 'P')
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Derived syntax

infixl 4 \/
infixl 5 /\

-- | Syntaz sugar for disjunction
(\/) :: Term a -> Term a -> Term a
p\/ q=Not p:=>:q

-- | Syntaz sugar for conjunction
(/\) :: Term a -> Term a -> Term a
p/\ q =DNot (p :=>: Not q)

-- | Syntaz sugar for truth
truth :: Term Char
truth = p :=>: p

-- | Syntaz sugar for false
false :: Term Char
false = Not truth
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A proof tool: the deduction [meta]-theorem

Why did we need five steps to prove P — P. Can't we just use conditional
proof?

@ Assume P.
@ Have P.

Hence, P — P.

Deduction Theorem

From {P} Ul - Q, we can derive ' P — Q.

But Our axiom system says nothing about assumptions! J
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A DSL for proof trees with assumptions

data Proof a = Assume (Term a)
| UseTheorem (Theorem a)
| MP (Proof a) (Proof a)

deriving Eq

Semantics
-- Convert a proof tree to the form [ - P
sequent :: (Eq a, Show a) => Proof a -> ([Term a], Term a)
sequent (Assume a) = ([a], a)
sequent (UseTheorem t) = ([], termOfTheorem t)
sequent (MP pr pr') =

let (asms, p :=>: q) = sequent pr

(asms', _) = sequent pr' in
(nub (asms ++ asms'), q)

v
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A DSL for proof trees with assumptions

Semantics
-- Send {P}UTFQ tolT+-P—Q

discharge :: (Ord a, Show a) => Term a -> Proof a -> Proof a

-- Push a proof through the kernel
verify :: Proof a -> Theorem a

The implementation of ‘discharge’ follows the proof of the deduction
theorem!
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Example with DSL

We want:
inst2 :: Term a -> Term a -> Theorem a -> Theorem a

--FP—=>P—1
lemmal =
let stepl = Assume (Not p)
step2 = UseTheorem (inst2 (Not p) (Not (false P)) axioml)

step3 = MP step2 stepl
step4 = UseTheorem (inst2 (false P) p axiom3)
stepb = MP step4 step3

in verify stepb

> lemmal
Theorem (Not (Var 'P') :=>: Var 'P'
:=>: Not (Var 'P' :=>: Var 'P'))
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Embedding Sequent Calculus

Assumption carrying proofs

o We'd like to work with proofs of the form I' = P without needing a
DSL and a separate verification step.

@ We can identify a sequent P1, P>, ..., P, = P with the implication
PP—PL—--—=P,—>P

@ We just need to keep track of n:

data Sequent a = Sequent Int (Theorem a)
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Sequent inference

Modus Ponens on Sequents

Given the sequents
NrN-P— Qand A+ P,
we can derive the sequent
FrUAkF Q.

Challenge: The union ' U A must be computed in the derivation of this
rule.
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Suppose we want to perform Modus Ponens on

P]_,P2,P3 FP— Q and Pl,P3,P4 P

where P; < Pj for i,j € {1,2,3,4}.

(3,Pr— P, — P3— (P— Q))

and

(3,P1 = P3 = P4—> P)

A\

(4,P1—>P2—)P3—>P4—>Q).
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Computation by conversion

First, use Axiom 1 to add extra conditions on the front of both theorems.

-P1—>P2—>P3—>(P—>Q)

and
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Computation by conversion

Using
(P>Q—=R)<(Q—-P—=R)
we have
.—>P1—>P2—>P3—>(P—>Q)
<—>P1—>-—>P2—>P3—>(P—> Q)
<—>P1—>P2—>-—>P3—>(P—> Q)
“PL— Py — Py — [Py — (P~ Q)
and

-—>P1—>P3—>P4—>P
<—>P1—>-—>P3—>P4—>P
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Computation by conversion

Using

we have

and

Phil Scott

P>Q—-R)+(PANR—R)

Py — P, = P3— Py — (P— Q)
“PLAP, = P3— Py — (P— Q)
“PL AP NP3 = Py — (P — Q)
Py AP NP3 APy — (P — Q)

Pr—=P,—=P3—=Py,—P
SPLAPy = P3— Py — P
SGPIANP NP3 = Py — P
PLAPy NP3 APy — P
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Computation by conversion

Using axiom 2 and modus ponens, we can then obtain
Pi APy AP3APy— R
Then using
(P=Q—=R)<(PANQ—R)

we have

PiANP>ANP3APy— R
PLANPAP3s — Py — R
SPiANP, - P3— Pr— R
P —= P, — P3Py — R
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Conversions

@ A conversion is any function which sends a term ¢ to a list of
theorems of the form F ¢ < 9.

@ The most basic conversions come from equivalence theorems:

o Given a theorem of the form F ¢ <> 1), we have a conversion which:
@ accepts a term t
o tries to match t against ¢ to give an instantiation 0
e returns F ¢[0] < ¢[6].

e For example:
@ the theorem p <+ p yields a conversion called al1C
o the theorem (x <+ y) <> (y <> x) yields a conversion called symC
o the theorem (P — Q — R) <> (P A @ — R) yields a conversion called

uncurryC
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Conversionals

@ Functions which map conversions to conversions are called
conversionals.
@ Examples include:
antC converts only the left hand side of an implication
conclC converts only the right hand side of an implication
negC converts only the body of a negation
orElseC tries a conversion and, if it fails, tries another
thenC applies one conversion, and then a second to the results
sumC tries all conversions and accumulates their results

@ With these conversionals, we can algebraically construct more and
more powerful conversions, implementing our own strategies for
converting a term, such as those we need for embedding sequent
calculus.
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Truth Table Verification informally

@ We nominate a fresh proposition variable X and define T = X — X.
@ Given a proposition, we recurse on the number of other variables.
@ Base case: the only variable is X. Evaluate the term according to

truth table definitions for each connective. If we evaluate to T, we
have a tautology.

@ Recursive case: there are n variables other than X. Take the first
variable P and consider the two cases P = T and P = 1. Substitute
in these cases and verify that we have a tautology. If so, the original
proposition is a tautology.
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Truth Table Verification for our Sequent Calculus

@ Derive a rule for case-splitting:

FrU{P}FA AU{-PIFA
FUAFA

@ Derive theorems for evaluating tautologies:
T=T«T

T—=1l& L

1l =17

1l —=1<T

T+ L

L+ T

@ Derive PFP <+ Tand - PFP <+ L
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Truth Table Verification for our Sequent Calculus

@ Derive a conversion for fully traversing a proposition:

depthC :: Conv a -> Conv a

depthC ¢ = tryC (antC (depthC c))
“thenC™ tryC (conclC (depthC c))
“thenC™ tryC (notC (depthC c))
“thenC” tryC c

@ Use the conversion and our evaluation rules to fully evaluate a
proposition with no variables other than X. If we end up at T, we can
then use the derived rule

r-P=T
r=rP
e Wrap up in a verifier (and so claim our axioms complete):
tautology :: Term a -> Maybe (Theorem a)
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@ In LCF, we use a host language (ML, Haskell, Coq etc...) to secure
and program against a trusted core.

@ A bootstrapping phase is usually required to get to the meat.

@ We can often follow textbook mathematical logic here, but we do have
to worry about computational efficiency.

@ We can embed richer logics inside the host logic (e.g. a proof tree
DSL or a sequent calculus)

e Combinator languages can be used to craft strategies (for conversion,
solving goals with tactics)

@ With conversions at hand, problems can be converted to a form where
we can implement decision procedures and other automated tools for
proving theorems (resolution proof, linear arithmetic, computation of
Grobner bases etc. . .)
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