Write your own Theorem Prover

Phil Scott

27 October 2016
Introduction

We’ll work through a toy LCF style theorem prover for classical propositional logic. We will:

- review the LCF architecture
- choose a logic
- write the kernel
- derive basic theorems/inference rules
- build basic proof tools
- write a decision procedure
What is LCF?

- A design style for theorem provers.
- Follows the basic design of *Logic of Computable Functions* (Milner, 1972).
- Examples: HOL, HOL Light, Isabelle, Coq.
- Syntax given by a data type whose values are logical terms.
- There is an abstract type whose values are logical theorems.
- Basic inference rules are functions on the abstract theorem type.
- Derived rules are functions which call basic inference rules.
What is Classical Propositional Logic (informally)

- **Syntax:**
 - Variables P, Q, \ldots, R and connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$
 - Terms/formulas: $P, \neg P, P \lor Q, P \land Q, P \rightarrow Q, P \leftrightarrow Q$

- **Semantics**
 - Truth values \top and \bot assigned to variables
 - Connectives evaluate like “truth-functions”; e.g. $\top \lor \bot = \top$
 - Theorems are terms which always evaluate to \top (tautologies)

- **Proof**
 - Theorems can be found by truth-table checks, DPLL proof-search, or by applying rules of inference to axioms.
Given an alphabet α, a term is one of
- a variable $v \in \alpha$
- a negation $\neg \phi$ for some formula ϕ (we take \to to be right-associative)
- an implication $\psi \to \phi$ for formulas ϕ and ψ

A theorem is one of

Axiom 1 $\phi \to \psi \to \phi$ for terms ϕ and ψ
Axiom 2 $(\phi \to \psi \to \chi) \to (\phi \to \psi) \to (\phi \to \chi)$ for terms ϕ, ψ and χ
Axiom 3 $(\neg \phi \to \neg \psi) \to \psi \to \phi$ for terms ϕ and ψ

Modus Ponens a term ψ whenever ϕ and $\phi \to \psi$ are theorems
Formally
Given an alphabet α, a term is one of
- a variable $v \in \alpha$
- an implication $\psi \rightarrow \phi$ for formulas ϕ and ψ (we take \rightarrow to be right-associative)
- a negation $\neg \phi$ for some formula ϕ

Really Formally

```haskell
infixr 1 :=>:

data Term a = Var a
  | Term a :=>: Term a
  | Not (Term a)

deriving Eq
```
Theorems

\[
\text{axiom1} :: \text{a} \to \text{a} \to \text{Theorem a} \\
\text{axiom1 p q} = \text{Theorem (p :=>: q :=>: p)}
\]

\[
\text{axiom2} :: \text{a} \to \text{a} \to \text{a} \to \text{Theorem a} \\
\text{axiom2 p q r} = \\
\quad \text{Theorem ((p :=>: q :=>: r) :=>: (p :=>: q) :=>: (p :=>: r))}
\]

\[
\text{axiom3} :: \text{a} \to \text{a} \to \text{Theorem a} \\
\text{axiom3 p q} = \text{Theorem ((Not p :=>: Not q) :=>: q :=>: p)}
\]

\[
\text{mp} :: \text{Eq a} \to \text{Theorem a} \to \text{Theorem a} \to \text{Theorem a} \\
\text{mp (Theorem (p :=>: q)) (Theorem p')} \mid p == p' = \text{Theorem q}
\]
module Proposition (Theorem, Term(..), termOfTheorem, axiom1, axiom2, axiom3, mp) where

The Theorem type does not have any publicly visible constructors. The only way to obtain values of Theorem type is to use the axioms and inference rule.
First (meta) theorem

Theorem

For any term P, $P \rightarrow P$ is a theorem.

Proof.

Take ϕ and χ to be P and ψ to be $P \rightarrow P$ in Axioms 1 and 2 to get:

1. $P \rightarrow (P \rightarrow P) \rightarrow P$
2. $(P \rightarrow (P \rightarrow P) \rightarrow P) \rightarrow (P \rightarrow P \rightarrow P) \rightarrow (P \rightarrow P)$

Apply modus ponens to 1 and 2 to get:

3. $(P \rightarrow P \rightarrow P) \rightarrow P \rightarrow P$

Use Axiom 1 with $/phi$ and $/psi$ to be P to get:

4. $(P \rightarrow P \rightarrow P)$

Apply modus ponens to 3 and 4.
First meta theorem formally

Metaproof

```
theorem :: Eq a => Term a -> Theorem a
theorem p =
  let step1 = axiom1 p (p :=>: p)
  step2 = axiom2 p (p :=>: p) p
  step3 = mp step2 step1
  step4 = axiom1 p p
  in mp step3 step4
```

Example

```
> theorem (Var "P")
Theorem (Var "P" :=>: Var "P")
> 
```
Issues

- How many axioms are there?
 \[\text{axiom1} :: a \to a \to \text{Theorem } a \]

- How many theorems did we just prove?
 \[\text{theorem} :: \text{Eq } a \Rightarrow \text{Term } a \to \text{Theorem } a \]

- Why could this be a problem for doing formal proofs?
A more(?) efficient axiomatisation

\[(p, q, r) = (\text{Var}'p', \text{Var}'q', \text{Var}'r')\]

axiom1 :: Theorem Char

\[\text{axiom1} = \text{Theorem} \ (p :=>: q :=>: p)\]

axiom2 :: Theorem Char

\[\text{axiom2} = \text{Theorem} \ ((p :=>: q :=>: r) :=>: (p :=>: q) :=>: (p :=>: r))\]

axiom3 :: Theorem Char

\[\text{axiom3} = \text{Theorem} \ ((\text{Not } p :=>: \text{Not } q) :=>: q :=>: p)\]

instTerm :: (a -> Term b) -> Term a -> Term b

\[\text{instTerm } f \ (\text{Var } x) = f \ x\]
\[\text{instTerm } f \ (\text{Not } t) = \text{Not} \ (\text{instTerm } f \ t)\]
\[\text{instTerm } f \ (a :=>: c) = \text{instTerm } f \ a :=>: \text{instTerm } f \ c\]

inst :: (a -> Term b) -> Theorem a -> Theorem b

\[\text{inst } f \ (\text{Theorem } x) = \text{Theorem} \ (\text{instTerm } f \ x)\]
trueThm =
 let inst1 = inst (\v -> if v == 'q' then p :=>: p else p)
 step1 = inst1 axiom1
 step2 = inst1 axiom2
 step3 = mp step2 step1
 step4 = inst (const p) axiom1
 in mp step3 step4

> theorem
Theorem (Var 'P' :=>: Var 'P')
Derived syntax

infixl 4 \/
infixl 5 /\

-- / Syntax sugar for disjunction
(\/) :: Term a -> Term a -> Term a
p \/ q = Not p :=>: q

-- / Syntax sugar for conjunction
(\/) :: Term a -> Term a -> Term a
p /\ q = Not (p :=>: Not q)

-- / Syntax sugar for truth
truth :: Term Char
truth = p :=>: p

-- / Syntax sugar for false
false :: Term Char
false = Not truth
A proof tool: the deduction [meta]-theorem

Why did we need five steps to prove $P \rightarrow P$. Can’t we just use conditional proof?

1. Assume P.
2. Have P.

Hence, $P \rightarrow P$.

Deduction Theorem

From $\{P\} \cup \Gamma \vdash Q$, we can derive $\Gamma \vdash P \rightarrow Q$.

But Our axiom system says nothing about assumptions!
A DSL for proof trees with assumptions

Syntax

```haskell
data Proof a = Assume (Term a)
    | UseTheorem (Theorem a)
    | MP (Proof a) (Proof a)

deriving Eq
```

Semantics

```haskell
-- Convert a proof tree to the form \( \Gamma \vdash P \)
sequent :: (Eq a, Show a) => Proof a -> ([Term a], Term a)
sequent (Assume a) = ([a], a)
sequent (UseTheorem t) = ([], termOfTheorem t)
sequent (MP pr pr') = let (asms, p :->: q) = sequent pr
                        (asms', _) = sequent pr' in
                        (nub (asms ++ asms'), q)
```
Semantics

- Send \(\{P\} \cup \Gamma \vdash Q \) to \(\Gamma \vdash P \rightarrow Q \)

\[
\text{discharge} :: (\text{Ord } a, \text{Show } a) \rightarrow \text{Term } a \rightarrow \text{Proof } a \rightarrow \text{Proof } a
\]

- Push a proof through the kernel

\[
\text{verify} :: \text{Proof } a \rightarrow \text{Theorem } a
\]

The implementation of ‘discharge’ follows the proof of the deduction theorem!
We want:

```
inst2 :: Term a -> Term a -> Theorem a -> Theorem a

-- ⊢ ¬P → P → ⊥
lemma1 =
  let step1 = Assume (Not p)
  step2 = UseTheorem (inst2 (Not p) (Not (false P)) axiom1)
  step3 = MP step2 step1
  step4 = UseTheorem (inst2 (false P) p axiom3)
  step5 = MP step4 step3
  in verify step5
```

> lemma1
Theorem (Not (Var 'P') :=>: Var 'P'
 :=>: Not (Var 'P' :=>: Var 'P'))
Assumption carrying proofs

- We’d like to work with proofs of the form $\Gamma \vdash P$ without needing a DSL and a separate verification step.
- We can identify a sequent $P_1, P_2, \ldots, P_n \vdash P$ with the implication $P_1 \to P_1 \to \cdots \to P_n \to P$.
- We just need to keep track of n:

```haskell
data Sequent a = Sequent Int (Theorem a)
```

Phil Scott

Write your own Theorem Prover

27 October 2016
Sequent inference

Modus Ponens on Sequents

Given the sequents

\[\Gamma \vdash P \rightarrow Q \text{ and } \Delta \vdash P, \]

we can derive the sequent

\[\Gamma \cup \Delta \vdash Q. \]

Challenge: The union \(\Gamma \cup \Delta \) must be computed in the derivation of this rule.
Example

Suppose we want to perform Modus Ponens on

\[P_1, P_2, P_3 \vdash P \rightarrow Q \text{ and } P_1, P_3, P_4 \vdash P \]

where \(P_i < P_j \) for \(i, j \in \{1, 2, 3, 4\} \).

That is, on:

\[(3, P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow (P \rightarrow Q))\]

and

\[(3, P_1 \rightarrow P_3 \rightarrow P_4 \rightarrow P).\]

Goal:

\[(4, P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow Q).\]
First, use Axiom 1 to add extra conditions on the front of both theorems.

\[P_4 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow (P \rightarrow Q) \]

and

\[P_2 \rightarrow P_1 \rightarrow P_3 \rightarrow P_4 \rightarrow P \]
Computation by conversion

Using

\((P \rightarrow Q \rightarrow R) \leftrightarrow (Q \rightarrow P \rightarrow R)\)

we have

\[
\begin{align*}
P_4 & \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow (P \rightarrow Q) \\
\leftrightarrow P_1 & \rightarrow P_4 \rightarrow P_2 \rightarrow P_3 \rightarrow (P \rightarrow Q) \\
\leftrightarrow P_1 & \rightarrow P_2 \rightarrow P_4 \rightarrow P_3 \rightarrow (P \rightarrow Q) \\
\leftrightarrow P_1 & \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow (P \rightarrow Q)
\end{align*}
\]

and

\[
\begin{align*}
P_2 & \rightarrow P_1 \rightarrow P_3 \rightarrow P_4 \rightarrow P \\
\leftrightarrow P_1 & \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P
\end{align*}
\]
Computation by conversion

Using

\[(P \to Q \to R) \equiv (P \land Q \to R)\]

we have

\[P_1 \to P_2 \to P_3 \to P_4 \to (P \to Q)\]

\[\iff P_1 \land P_2 \to P_3 \to P_4 \to (P \to Q)\]

\[\iff P_1 \land P_2 \land P_3 \to P_4 \to (P \to Q)\]

\[\iff P_1 \land P_2 \land P_3 \land P_4 \to (P \to Q)\]

and

\[P_1 \to P_2 \to P_3 \to P_4 \to P\]

\[\iff P_1 \land P_2 \to P_3 \to P_4 \to P\]

\[\iff P_1 \land P_2 \land P_3 \to P_4 \to P\]

\[\iff P_1 \land P_2 \land P_3 \land P_4 \to P\]
Computation by conversion

Using axiom 2 and modus ponens, we can then obtain

\[P_1 \land P_2 \land P_3 \land P_4 \rightarrow R \]

Then using

\[(P \rightarrow Q \rightarrow R) \iff (P \land Q \rightarrow R)\]

we have

\[P_1 \land P_2 \land P_3 \land P_4 \rightarrow R \]
\[\iff P_1 \land P_2 \land P_3 \rightarrow P_4 \rightarrow R \]
\[\iff P_1 \land P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow R \]
\[\iff P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow R \]
A conversion is any function which sends a term ϕ to a list of theorems of the form $\vdash \phi \leftrightarrow \psi$.

The most basic conversions come from equivalence theorems:

- Given a theorem of the form $\vdash \phi \leftrightarrow \psi$, we have a conversion which:
 - accepts a term t
 - tries to match t against ϕ to give an instantiation θ
 - returns $\vdash \phi[\theta] \leftrightarrow \psi[\theta]$.

For example:

- the theorem $p \leftrightarrow p$ yields a conversion called allC
- the theorem $(x \leftrightarrow y) \leftrightarrow (y \leftrightarrow x)$ yields a conversion called symC
- the theorem $(P \rightarrow Q \rightarrow R) \leftrightarrow (P \land Q \rightarrow R)$ yields a conversion called uncurryC
Functions which map conversions to conversions are called conversionals.

Examples include:

- antC converts only the left hand side of an implication
- conclC converts only the right hand side of an implication
- negC converts only the body of a negation
- orElseC tries a conversion and, if it fails, tries another
- thenC applies one conversion, and then a second to the results
- sumC tries all conversions and accumulates their results

With these conversionals, we can algebraically construct more and more powerful conversions, implementing our own strategies for converting a term, such as those we need for embedding sequent calculus.
Truth Table Verification informally

- We nominate a fresh proposition variable X and define $\top \equiv X \rightarrow X$.
- Given a proposition, we recurse on the number of other variables.
- Base case: the only variable is X. Evaluate the term according to truth table definitions for each connective. If we evaluate to \top, we have a tautology.
- Recursive case: there are n variables other than X. Take the first variable P and consider the two cases $P = \top$ and $P = \bot$. Substitute in these cases and verify that we have a tautology. If so, the original proposition is a tautology.
- Derive a rule for case-splitting:

\[
\frac{\Gamma \cup \{P\} \vdash A \quad \Delta \cup \{-P\} \vdash A}{\Gamma \cup \Delta \vdash A}
\]

- Derive theorems for evaluating tautologies:
 - \(T \rightarrow T \leftrightarrow T\)
 - \(T \rightarrow \bot \leftrightarrow \bot\)
 - \(\bot \rightarrow \bot \leftrightarrow T\)
 - \(\bot \rightarrow \bot \leftrightarrow T\)
 - \(\neg T \leftrightarrow \bot\)
 - \(\neg \bot \leftrightarrow T\)

- Derive \(P \vdash P \leftrightarrow T\) and \(\neg P \vdash P \leftrightarrow \bot\)
Truth Table Verification for our Sequent Calculus

- Derive a conversion for fully traversing a proposition:

```plaintext
depthC :: Conv a -> Conv a
depthC c = tryC (antC (depthC c))
  `thenC` tryC (conclC (depthC c))
  `thenC` tryC (notC (depthC c))
  `thenC` tryC c
```

- Use the conversion and our evaluation rules to fully evaluate a proposition with no variables other than X. If we end up at \top, we can then use the derived rule

$$
\Gamma \vdash P = \top \\
\Gamma \vdash P
$$

- Wrap up in a verifier (and so claim our axioms complete):

```plaintext
tautology :: Term a -> Maybe (Theorem a)
```
In LCF, we use a host language (ML, Haskell, Coq etc...) to secure and program against a trusted core.

A bootstrapping phase is usually required to get to the meat.

We can often follow textbook mathematical logic here, but we do have to worry about computational efficiency.

We can embed richer logics inside the host logic (e.g. a proof tree DSL or a sequent calculus)

Combinator languages can be used to craft strategies (for conversion, solving goals with tactics)

With conversions at hand, problems can be converted to a form where we can implement decision procedures and other automated tools for proving theorems (resolution proof, linear arithmetic, computation of Grobner bases etc...)