
Lecture 10

Logic Programming

Contents

• Clausal form

• Resolution

• Horn clauses

• Prolog as Horn clauses

• Prolog search as refutation proof

(See Clocksin & Mellish, Chapter 10)

Logic and Prolog

• The meaning of a Prolog program can be explained very
naturally using First Order Predicate Logic (FOPL).

• This gives a theoretical basis for Prolog and related
computational systems.

• There are some simplifications and assumptions needed.

• Many practical Prolog facilities are not expressible in
FOPL.

“Introduction to Artificial Intelligence Programming”, School of Informatics 2

Some terminology

A literal is either a predicate applied to arguments, e.g.:

p(a, b, c, d)

mother(fred, rita)

or the negation of a predicate applied to arguments, e.g.

⇁ p(a, b, c, d)

⇁ mother(fred, rita)

A conjunctionis a sequence of expressions linked by “∧ ”
(for “and”).

p(a, b, c, d) ∧ q(c, d) ∧ p(a, f, c, d)

mother(fred, rita) ∧ father(fred, bill)

A disjunctionis a sequence of expressions linked by “∨ ”
(for “or”).

p(a, b, c, d) ∨ ⇁ q(c, d) ∨ p(a, f, c, d)

mother(fred, rita) ∨ ⇁ father(fred, bill)

A clauseis a disjunction of literals.

“Introduction to Artificial Intelligence Programming”, School of Informatics 3

Functions and Skolemisation

A function termis an argument to a predicate in the form of a
functor and arguments; e.g.

likes(mother(fred), father(bill))

greater(succ(succ(x)), succ(x))

In rearranging FOPL formula, it is possible to re-express
existential quantifiers (∃) with constants or function terms
(“Skolemisation” – details omitted.)

∀Y ∃X : likes(Y, X)

becomes:

likes(Y, skolem1(Y ))

(Names of the Skolem functions are chosen to be different in
different expressions.)

“Introduction to Artificial Intelligence Programming”, School of Informatics 4



Clausal form

Any expression in FOPL can be rearranged intoclausal form:
a conjunction of disjunctions of literals, with all variables
treated asuniversallyquantified, and any existential variables
represented as Skolem terms.

∀M(man(M) ⊃ (∃W (woman(W ) ∧ likes(M, W ))))

becomes:

(⇁ man(M) ∨ woman(skolem2(M))) ∧
(⇁ man(M) ∨ likes(M, skolem2(M)))

So any formula can be seen as a collection of clauses, viewed
as being conjoined, each clause being a disjunction of literals.

Hence, anysetof formulae can be thus arranged, by
combining the sets for each formulae.

“Introduction to Artificial Intelligence Programming”, School of Informatics 5

Resolution

One simple inference rule –resolution– for use in a set of
clauses.

Given a set of clauses, if there is a pair of clauses which
contain two literals, one positive and one negated, which –
apart from the negation symbol – unify (as in Prolog
unification), then the following clause is a logical
consequence:

• unify the two matching literals

• make a new clause by joining the two old clausesapart
from the two matching literals

• propagate any variable bindings achieved in the unification
throughout the new clause.

Resolving:

⇁ parent(X,Z) ∨ ⇁ ancestor(Z, Y ) ∨ ancestor(X, Y )

and:

⇁ ancestor(peter,W )

yields:

⇁ parent(peter, Z) ∨ ⇁ ancestor(Z, W )

“Introduction to Artificial Intelligence Programming”, School of Informatics 6

This can be repeated, creating an expanding collection of
clauses, always logically a consequence of the initial set.

“Introduction to Artificial Intelligence Programming”, School of Informatics 7

Refutation

Notice that if the clauses being resolved are simplyP and
⇁ P , the result will be an empty clause (no literals); i.e.
inconsistency produces the empty clause.

To determine if a given literalQ is a consequence of a
(consistent) set of clausesC:

• negateQ (forming⇁ Q)

• add this item toC, forming{⇁ Q} ∪ C

• repeatedly perform the resolution inference step within the
set of clauses, adding the results back into the set

• if a resolution results in an empty clause,{⇁ Q} ∪ C was
inconsistent

• and in this caseC ⊃ Q

“Introduction to Artificial Intelligence Programming”, School of Informatics 8



Horn clause

A Horn clauseis a clause where at most one of the literals is
positive (not negated).

⇁ parent(X,Z) ∨ ⇁ ancestor(Z, Y ) ∨ ancestor(X, Y )

A Horn clause can be rearranged into an implication between
a conjunction of (positive) literals and a single (positive)
literal:

(parent(X, Z) ∧ ancestor(Z, Y )) ⊃ ancestor(X, Y )

This is just like aProlog “clause”, with the comma for
“conjunction” and “:- ” as (reverse) implication:

ancestor(X,Y) :- parent(X, Z) , ancestor(Z,Y)

So a Prolog program can be thought of as a collection of Horn
clauses.

“Introduction to Artificial Intelligence Programming”, School of Informatics 9

Resolution with Horn clauses/Prolog

Resolution with Horn clauses is simple – each clause has at
most one positive literal, so resolution is always between that
unique positive literal and one of the negated literals from the
other clause.

In the Prolog format, the positive literal is the head of the
clause.

So resolution consists of unifying a negative literal with the
head of a clause.

View negated literals as “goals”– Prolog clause bodies
become goals when their head matches.

The program is the base set,C, of clauses.

The top level goal the user supplied is the initial literalQ,
which is implicitly negated then added toC.

Finding a clause whose head matches the goal is finding a
clause whose one positive literal matches the negated literal
that is the current focus.

The original program (C) is the only place where positive
literals can be found – results of resolution are always entirely
negated literals.

“Introduction to Artificial Intelligence Programming”, School of Informatics 10

Prolog search as resolution + refutation

Prolog’s computation is then a particular search strategy:

• for a current goal (clause of exactly one negated literal),
find a clause whose head (unique positive literal) unifies;

• do the unification and resolution;

• resulting clause will be just the body of the previous
clause (goal and head matched and so are omitted);

• go to work on this new clause from left-to-right – treat
each literal in turn as a goal.

• keep track of pending goals (clause parts to be processed)

• if a resolution ever produces no pending goals, success.

“Introduction to Artificial Intelligence Programming”, School of Informatics 11

Some impurities

Some Prolog facilities are not properly logical:

Negation: The “\+ ” symbol (or “not” in Clocksin & Mellish)
means “not be successfully computable” (not “not logically
true”): “negation as failure” – see earlier lecture.. Also

\+ racoon(rocky).

is not acceptable as a program clause.

The cut: The “! ” operator acts on the search space, not on
the objects being computed upon. It can cause logically valid
deductions to be overlooked.

Any genuinely “meta” predicates: functor , var , =, etc.

“Evaluable” predicates: write , read , tab , etc.
(Predicates like “<” are also evaluable, but fit in neatly with
the logical account.)

“Introduction to Artificial Intelligence Programming”, School of Informatics 12



Summary

• Horn clauses are a general logical representation

• Resolution (with refutation) is a general inference
mechanism

• Pure Prolog can be viewed as a particular search process
for a Horn clause resolution theorem-prover

• There are impure aspects

“Introduction to Artificial Intelligence Programming”, School of Informatics 13


