Solutions to Self-Help Exercise 4: Unification and Rewrite Rules

Exercise 1

(a) 1. $(X \equiv 2) \land (X \equiv 2)$ (by decompose) 2. $(2 \equiv 2) \land (X \equiv 2)$ (by eliminate) 3. $X \equiv 2$ (by delete)

Succeeds with X=2

(b) 1. $(X \equiv 2+2) \land (X \equiv 4)$ (by decompose)

Fails

(c) 1. $(X \equiv a) \land (Y \equiv g(b)) \land (Y \equiv g(b))$ (by decompose) 2. $(X \equiv a) \land (g(b) \equiv g(b)) \land (Y \equiv g(b))$ (by eliminate) 3. $(X \equiv a) \land (Y \equiv g(b))$ (by delete)

Succeeds with X=a and Y = g(b)

(d) 1. $(X \equiv a) \land (b \equiv Y)$ (by decompose)

Fail as target contains a variable.

Exercise 2

(a) 1.
$$(X \equiv a) \land (b \equiv Y)$$
 (by decompose)
2. $(X \equiv a) \land (Y \equiv b)$ (by switch)

Succeeds with X=a and Y=b

(b) 1.	$(X \equiv$	$(Y) \land$	$(b \equiv$	a)	(by	decompose)
--------	-------------	-------------	-------------	----	-----	------------

Fails

(c) 1. $(X \equiv f(Y)) \land (a \equiv Y)$	(by decompose)
2. $(X \equiv f(Y)) \land (Y \equiv a)$	$(by \ switch)$
3. $(X \equiv f(a)) \land (Y \equiv a)$	(by <i>eliminate</i>)

Succeeds with $X \equiv f(a)$ and $Y \equiv a$.

 $\begin{array}{ll} (\mathrm{d}) \ 1. \ (X \equiv f(Y)) \land (g(X) \equiv Y) & (\mathrm{by} \ decompose) \\ 2. \ (X \equiv f(Y)) \land (g(f(Y)) \equiv Y) & (\mathrm{by} \ coalesce) \\ 3. \ (X \equiv f(Y)) \land (Y \equiv g(f(Y))) & (\mathrm{by} \ switch) \end{array}$

Fails due to occurs check.

(e) 1. $(a + X \equiv a) \land (b \equiv Y)$	(by <i>decompose</i>)
2. $(a \equiv a + X) \land (b \equiv Y)$	(by $switch$)

Fails due to occurs check.

Exercise 3

(a) One solution is:

$$\begin{array}{ll} (\neg p \land \neg \neg q) \lor r & \neg \neg q \text{ matches with LHS of } \neg \neg A \Rightarrow A \\ = (\neg p \land q) \lor r & \text{replace with RHS} \end{array} \\ exp = (\neg p \land \neg \neg q) \lor r \\ sub = \neg \neg q \\ lhs = \neg \neg A \\ rhs = A \\ \phi = \{q/A\} \end{array}$$

(b) One normal form is:

$\neg (\neg p \land (q \lor \neg r))$	
$= \neg \neg p \lor \neg (q \lor \neg r))$	(From rule 2)
$= p \lor \neg (q \lor \neg r))$	(From rule 1)
$= p \lor (\neg q \lor \neg \neg r))$	(From rule 3)

$$= p \lor (\neg q \lor r))$$
 (From rule 1)

Exercise 4

To show that the rule terminates we need some decreasing measure. Could choose:

- Average depth of parse tree decreases
- Number of arithmetic operations decreases
- Number of terms decreases

Exercise 5

Need 2 rewrite rules for critical pairs. We have:

$$p(p(x)) \Rightarrow g(x)$$
$$p(p(x')) \Rightarrow g(x')$$

Recall from lectures that a critical pair is defined as:

 $< rhs_1 \circ \theta, (lhs_1 [rhs_2]) \circ \theta >$

where $\theta = mgu$ of *bit* (subpart of lhs_1) and lhs_2 .

If we take:

$lhs_1 = p(p(x))$	$rhs_1 = g(x)$	bit = p(x)
$lhs_2 = p(p(x'))$	$rhs_2 = g(x')$	$\theta = \{p(x')/x\}$

the critical pair is:

If we instead take bit = x (so $\theta = \{p(p(x'))/x\}$) then the critical pair is:

$$\langle g(p(p(x'))) \rangle, g(g(x')) \rangle$$

If we instead take bit = p(p(x)) (so $\theta = \{x'/x\}$) then the critical pair is: