Solutions to Self-Help Exercise 1: Propositional Logic

Exercise 1

1. Cats chase mice or birds, but not at the same time. This can be represented as: $(M \lor B) \land \neg (M \land B)$ where M: Cats chase mice B: Cats chase birds

M	В	$M \lor B$	$\neg (M \land B)$	$(M \lor B) \land \neg (M \land B)$
t	t	t	f	f
t	f	t	t	t
f	t	t	t	t
f	f	f	t	f

2. If it rains the beach will be empty. This can be represented as: $R \longrightarrow E$

where R: It rains E: Beach is empty

R	E	$R \longrightarrow E$
t	t	t
t	f	f
f	t	t
f	f	t

3. If Jane bought a piano today, she either sold her old one or took out a bank loan.

This can be represented as: $P \longrightarrow S \lor B$ where P: Jane bought a piano today S: Jane sold her old piano B: Jane took out a bank loan

P	S	L	$P \longrightarrow S \lor B$
t	t	t	t
t	t	$\int f$	t
t	$\int f$	t	t
t	$\int f$	$\int f$	f
f	t	t	t
f	t	$\int f$	t
f	$\int f$	t	t
f	$\int f$	$\int f$	t

Exercise 2

The proposition $P \land (P \longrightarrow Q)$ is satisfiable if there is some interpretation which evaluates to *true*. It is valid if all interpretations evaluate to *true*

 $P \land (P \longrightarrow Q)$ = $P \land (\neg P \lor Q)$ = $(P \land \neg P) \lor (P \land Q)$ = $f \lor (P \land Q)$ = $P \land Q$

 $P \wedge Q$ is satisfiable, since it evaluates to *true* when P is *true* and Q is *true*. Thus $P \wedge (P \longrightarrow Q)$ is satisfiable.

 $P \wedge Q$ is not valid, since it evaluates to *false* when P is *false* and Q is *false*. Thus $P \wedge (P \longrightarrow Q)$ is not valid.

Exercise 3

CONNECTIVE	EXPRESSION WITH ALONE
_	$p \mid p$
\land	$(p \mid q) \mid (p \mid q)$
\vee	$(p \mid p) \mid (q \mid q)$
\longrightarrow	$p \mid (q \mid q)$

Some notes:

- $p \wedge q$ is the same as $\neg (p \mid q)$
- $p \lor q$ is the same as $\neg(\neg p \land \neg q)$
- $p \longrightarrow q$ is the same as $\neg p \lor q$