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IsabelleIsabelle

Isabelle
Isabelle/HOL

sets…

Other 
logic…

e.g.Propositional,
FOL etc.

Has decision procedures
e.g. linear arithmetic

Simplifier does
rewriting

Has its own
connectives and
Quantifiers:
e.g 
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Has reasoning methods 
(based on natural deduction for 
example)

Hierarchy of theories e.g. sets, natural 
numbers, real numbers, security protocols …

Proof tools:
blast, auto, etc …

Meta-logic has
Universal quantifier

Implication �
Conjunction “;”

�
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• In  Isabelle/HOL: 

[| A1 ; A2 ;… ; An |] ���� G

can be read as “if A1 and A2 and ... and An then G” 

Note:  - P x (P x)  stands for  P (x) (P(x))

- P(x, y) can be expressed as  P x y or  (P x) y

- recall that in higher order logic: functions, sets and 
predicates can be identified with each other.

• ∀x. P, ∃x. P are quantified sentences (where P may or may not contain x)

• If and only if is expressed using “=“ e.g.  (P ∧ Q) = ¬ (¬P ∨ ¬Q)

3
Notes on Isabelle/HOL NotationNotes on Isabelle/HOL Notation
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• Forward and backward proofs

• Natural Deduction

- Introduction Rules
- Elimination Rules

• Isabelle tactics/methods

e.g. “rule”, “drule”, “auto”, …

• We will look at procedural proofs i.e. proofs will have sequences of 

apply (method theorem_name) 

4

Reasoning in IsabelleReasoning in Isabelle
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• So far, we have seen (automatic) refutation proofs mainly

• Isabelle uses mostly natural deduction

• Natural deduction aims to capture human reasoning patterns when 
doing formal logic 

• Each logical connective has two kinds of rules:

• Introduction Rules: allow connective  to be inferred

• Elimination Rules:  allow consequences  from connective to be deduced

•In general, rules will involve other logical symbols e.g. user defined ones
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The Rules of the GameThe Rules of the Game
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Forward proof: “If we have P and we have Q then we have P ∧ Q”

6
Natural DeductionNatural Deduction

Example:  Conjunction Introduction enables us to introduce the � connective

Backward proof: “To prove P  Q, prove that P is true and prove that Q is true”

P Q

P ! Q
conjI

introduced in conclusion

premises

conclusion

Isabelle name 
for rule
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Natural Deduction (Cont.)Natural Deduction (Cont.)
Conjunction Introduction rule:

premises

conjunction
conclusion

[| ?P ; ?Q |] ���� ?P " ?Q (conjI)

“fat brackets” group premises

?P, ?Q: schematic
variables can be 
substituted for

Isabelle syntax:

In procedural style: mainly reason backwards
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A Simple ProofA Simple Proof

Given that P is true and that Q is true prove P !$# Q ! P %

branch is
closed

Assumptions:  P    Q

Q P

(Q ! P)P
assumption

conjI

assumption assumption

P ! (Q ! P)

conjI
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A Simple A Simple BackwardBackward Proof in IsabelleProof in Isabelle
Given that P is true and that Q is true prove P !$# Q ! P %

Isabelle commands

The method/tactic called rule
applies its argument (a theorem) 
backwards

Isabelle keyword

lemma a_conj_theorem: “[| P ; Q |] ���� P ! (Q ! P)”
apply (rule conjI)
apply assumption 
apply (rule conjI)
apply assumption
apply assumption
qed

name given to resulting theorem
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Other Introduction Rules (I)Other Introduction Rules (I)

Forward: “If on the the assumption that P is true, Q can be shown to     
hold, then we can conclude P → Q “

Backward: “ To prove P → Q , assume P is true and prove that Q
follows”

Isabelle:  (?P� & Q % � & P→ & Q # impI %

More rules to come …

P� Q

P→ Q
impI

Q

P→ Q
impI

[P]
•
•
•

Common 
notation:

or as

Note: [P]: assumption local to sub-proof
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Other Introduction Rules (II)Other Introduction Rules (II)

Q

P ∨ Q
disjI2

P

P ∨ Q
disjI1

false

¬P
notI

[P]
•
•
•

Intuition: ¬ P = (P→ false)

P = Q
iffI

Q

[P]
•
•
•

P

[Q]
•
•
• Isabelle: “[| ?P���� ?Q; ?Q ���� ?P |] ���� P = Q”

Automated Reasoning Introduction to Isabelle/HOL                 Lecture 8/9

12SubstitutionSubstitution

s = t P[s / x]
P[t / x]

ssubst

s = t s = s 
t = s

s = t (x = s )[s / x] 
t = s

In Isabelle literature: P[t / x] is result of replacing x by t in P 
Note: this is same as P ⋅ {t / x} that we saw before

only positions designated by 
variable substituted by this rule

Example: prove symmetry of equality predicate i.e. s = t���� t = s:

Substitution rule in Isabelle: [| ?t = ?s ; ?P ?s |]� ?P ?t (ssubst)

Justification:
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• Quantifiers ∀, ∃: need substitution and notion of arbitrary variable

Universal Quantifier:

provided provided xx00 does notdoes not occur in occur in P x P x or any premise or any premise 
on on P xP x00 which may dependwhich may depend

x0 is arbitrary i.e. we make no assumptions about it

In Isabelle: use underlying formalism of Isabelle, the meta-logic, to express 
the proviso logically

don’t confuse this with conjunction
Isabelle’s meta-logical universal quantifier 
enables notion of arbitrary value

Other Introduction Rules (III)Other Introduction Rules (III)

allI
P x0'
x. P x

( x. ?P x) � ∀x. ?P x
(
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Existential Quantifier:

“If we can exhibit some a such that 
P(a) is true then ∃x. P(x) is also true”

In Isabelle: ?P ?a ���� ∃∃∃∃x. ?P x

P a)
x. P x

Other Introduction Rules (IV)Other Introduction Rules (IV)

even 2)
x. even x

Example:
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Elimination RulesElimination Rules
• Work in opposite direction from introduction rules

• Conjunction rules: P * Q
Q

conjunct2

In Isabelle: ?P + ?Q � ?P ?P + ?Q � ?Q

Disjunction rule: 

[| ?P ∨ ?Q ; ?P � ?R ;  ?Q � ?R |] � ?R (disjE)

[P], [Q] local to their subproofs have to prove “R” twice under 
different assumptions

RR

R

[P]
•
•
•

[Q]
•
•
•

P ∨ Q
disjE

P * Q
P

conjunct1
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Elimination Rules (II)Elimination Rules (II)
Using an elimination rule backwards produces a case-split

Example: Assume  “A ∨ B” prove “B ∨ A”

Note: can use “erule” method, designed to work with elimination rules

“erule” enables this subgoal 
to be proved immediately 
from premise of goal

A BdisjI2
B , AA , B

disjE

disjI2

assum assum

[A] [B]

B , A
B , A
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Elimination Rules Elimination Rules ((IIII)II)

Assume  “A ∨ B” prove “B ∨ A”Example:

A possible Isabelle proof:

lemma disj_swap: “A ∨ B� B ∨ A”
apply (erule disjE)
apply (rule disjI2)
apply assumption
apply (rule disjI1)
apply assumption
qed

could have used “apply (rule disjE)”.
This need extra step though.

Try it in Isabelle!
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IIsabellesabelle/HOL: /HOL: A Special Elimination RuleA Special Elimination Rule

• Isabelle elimination rules for ∧ are:

P * Q
Q 

rules simply return 1st/2nd half of conjunct

- these are called destruction rules in Isabelle

- they break and destroy a premise (we lose info when we apply them)

conjunct1: conjunct2:P * Q
P
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• Isabelle provides an alternative conjunction elimination rule

R
R

[P]
•
•
•

[Q]

P ∧ Q conjE

In Isabelle: [| ?P ∧ ?Q ; [| ?P ; ?Q |]� ?R |]� ?R (conjE)

IIsabellesabelle/HOL/HOL
A Special Elimination Rule for ConjunctionA Special Elimination Rule for Conjunction
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Modus Ponens
P→ Q P

Q
mp

Example: Prove P → (Q → R) � P ∧ Q → R

Implication:

In Isabelle: [| ?P→ ?Q ; ?P |] � ?Q

P * Q � R

P * Q
Q � R
P� ( Q � R)

impI
R

R
assum Q

assum P
assum assum

conjE
mp
mp

2.  [P ∧ Q]
3. [P] 4. [Q] 

1. P→ (Q → R)
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More Elimination Rules (V)More Elimination Rules (V)

elimination rule deduces any formula in the presence of both P and ¬P
¬ P P
R

notE

Isabelle: [|¬ ?P ; ?P |]  � ?R           (notE)

• In Isabelle, there are many useful proved theorems about negation  
that can be used in proofs

• Proof by contradiction often uses theorems involving contrapositives
such as: P→ Q and ¬Q→ ¬P

Example theorem: 
¬Q Q

P

[¬P]
.
.
.

[| ¬ ?Q ; ¬ ?P� ?Q |] � ?P 

Negation:

Isabelle: 
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Elimination Rules for QuantifiersElimination Rules for Quantifiers
Universal Elimination: 

Isabelle:  (∀x. ?P x ) � ?P ?x

• Note: In Isabelle terminology, this is a destruction rule
• Can provide an alternative non-destructive rule

Isabelle:

[| ∀x. ?P x ; ?P ?x � R |] � R       (allE)

∀ x. P x
P t

spec

unknown variable can be freely 
instantiated to any term

∀x. P x R
R

[P x]
.
.
.

allE
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Elimination Rules for QuantifiersElimination Rules for Quantifiers
Existential Quantifier:Existential Quantifier:

Provided Provided xx00 does not occur in does not occur in P xP x or or QQ or any other or any other 
premises other than premises other than P xP x00 on which derivation of on which derivation of QQ
from from P xP x00 dependsdepends

(exE)

This is (once again) universal quantification in the Isabelle 
meta-logic (cf. allI). It ensures that the proviso is enforced.

Q
Q

[P x0]
•
•
•

∃x. P x exE

In Isabelle: [| ∃x. ?P x ; x. ?P x� ?Q |] � ?Q
-

This proviso is part of the rule definition 
and cannot be omitted
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SummarySummary

• A first look at theorem proving in Isabelle/HOL

• Natural Deduction

- introduction and elimination rules in Isabelle

- some rules have provisos

• Proofs can be given as a tree for natural deduction

• Read Chapter 5 of tutorial on Isabelle/HOL

- available via AR web page

• More to come …


