
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL9: Using SQL from Java

Ian Stark

School of Informatics
The University of Edinburgh

Tuesday 26 October 2010
Semester 1 Week 6

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Domain-Specific vs. General-Purpose Languages

This is the first of three lectures on integrating domain-specific languages
with general-purpose programming languages. In particular, SQL for
database queries.

Using SQL from Java

Bridging Query and Programming Languages

Heterogeneous Metaprogramming

Ian Stark APL9 2010-10-26

Topic: Domain-Specific vs. General-Purpose Languages

This is the first of three lectures on integrating domain-specific languages
with general-purpose programming languages. In particular, SQL for
database queries.

Using SQL from Java

Bridging Query and Programming Languages

Heterogeneous Metaprogramming

Ian Stark APL9 2010-10-26

Preview

SQL as a domain-specific language

Injection of HTML, Javascript and SQL

Frameworks for generating SQL code

Ian Stark APL9 2010-10-26

SQL

SQL is a programming language, with a declarative part:

select isbn, title , price
from books
where price > 100.00
order by title

and an imperative part:

update books set price = 10.00 where price < 10.00
drop table sales

as well as numerous extensions, such as procedures and transactions.

SQL is a domain-specific language, rather than a general-purpose
programming language.

Ian Stark APL9 2010-10-26

Who Writes SQL?

SQL is one of the world’s most widely used programming languages, but
programs in SQL come from many sources. For example:

Hand-written by a programmer
Generated by some interactive visual tool
Generated by an application to fetch an answer for a user
Generated by one program to request information from another

Most SQL is written by programs, not directly by programmers.

The same is true of HTML, another domain-specific language.

Also XML, Postscript,. . .

Ian Stark APL9 2010-10-26

SkyServer Demonstration

http://cas.sdss.org/dr7/en/
http://cas.sdss.org/dr7/en/sdss/telescope/telescope.asp
http://cas.sdss.org/dr7/en/tools/search/
http://cas.sdss.org/dr7/en/help/docs/realquery.asp

Ian Stark APL9 2010-10-26

http://cas.sdss.org/dr7/en/
http://cas.sdss.org/dr7/en/sdss/telescope/telescope.asp
http://cas.sdss.org/dr7/en/tools/search/
http://cas.sdss.org/dr7/en/help/docs/realquery.asp

Sample Queries

−− Find some stars near a certain spot in the sky
SELECT top 10
p.objId,
p.run, p.rerun, p.camcol, p.field, p.obj,
p.type, p.ra, p.dec
FROM PhotoTag p, fGetNearbyObjEq(40.433,0.449,3) n
WHERE n.objID=p.objID and p.type=3

Ian Stark APL9 2010-10-26

Sample Queries

−− Make these a table with click−through links
SELECT TOP 10
’<a target="INFO" href="http://cas.sdss.org/dr5/en/tools/chart/’+
’navi.asp?ra=’ + cast(p.ra as varchar(30)) + ’&dec=’ +
cast(p.dec as varchar(30)) + ’">’ +
cast(p.objId as varchar(30)) + ’’ as objID,
p.run, p.rerun, p.camcol, p.field, p.obj, p.type, p.ra, p.dec
FROM PhotoTag p, fGetNearbyObjEq(40.433,0.449,3) n
WHERE n.objID=p.objID and p.type=3

Ian Stark APL9 2010-10-26

Sample Queries

−− Count those stars
select count(∗) from star p

−− Planetary query
select ’Pluto' FROM Planets
<i’
+’mg src="http://ian.stark.net/pluto.jpg">’

Ian Stark APL9 2010-10-26

HTML Injection

The Pluto page is an example of HTML injection.

The SkyServer website appears to be serving an incorrect image.

This is used in phishing attacks, and other fraud, where a web server can
be cajoled into presenting novel material as its own.

For example, a suitably crafted URL may cause a bank’s web server to
present a page that requests account details and then sends them to an
attacker’s own site.

Similarly, a comment on a blog may contain code that when read in a web
browser causes it to take some unexpected action.

This opportunity to inject HTML or Javascript can arise whenever a web
site takes user input and uses that to generate pages. This is known
loosely as cross-site scripting or XSS.

Ian Stark APL9 2010-10-26

Google Buzz XSS Hack

2010-02-09 Google Buzz social communication tool launched

2010-02-16 Cross-site scripting injection attack publicly demonstrated
2010-02-17 Google patch bug

Ian Stark APL9 2010-10-26

Google Buzz XSS Hack

2010-02-09 Google Buzz social communication tool launched
2010-02-16 Cross-site scripting injection attack publicly demonstrated

2010-02-17 Google patch bug

Ian Stark APL9 2010-10-26

Google Buzz XSS Hack

2010-02-09 Google Buzz social communication tool launched
2010-02-16 Cross-site scripting injection attack publicly demonstrated
2010-02-17 Google patch bug

Ian Stark APL9 2010-10-26

Google Buzz XSS Hack

2010-02-09 Google Buzz social communication tool launched
2010-02-16 Cross-site scripting injection attack publicly demonstrated
2010-02-17 Google patch bug

http://www.theregister.co.uk/2010/02/16/google_buzz_security_bug/
http://ha.ckers.org/blog/20100216/google-buzz-security-flaw/

Ian Stark APL9 2010-10-26

http://www.theregister.co.uk/2010/02/16/google_buzz_security_bug/
http://ha.ckers.org/blog/20100216/google-buzz-security-flaw/

Twitter Javascript injection

2010-09-21 10am UK time

Masato Kinugawa creates “Rainbow Twitter” demonstration.

Magnus Holm creates self-tweeting tweet.
Requires user to mouse over; limits replication to around 60
copies/second, reaching only a few hundred thousand twitter users.

Further worms require no mouse-over, insert further tweets, draw
arbitrarily on page, redirect browser. . .

2010-09-21 3pm UK time

Twitter patch vulnerability (7am their time)

Ian Stark APL9 2010-10-26

http://twitter.com/kinugawamasato/
http://twitter.com/#!/judofyr/

Twitter Javascript injection

2010-09-21 10am UK time

Masato Kinugawa creates “Rainbow Twitter” demonstration.

Magnus Holm creates self-tweeting tweet.
Requires user to mouse over; limits replication to around 60
copies/second, reaching only a few hundred thousand twitter users.

Further worms require no mouse-over, insert further tweets, draw
arbitrarily on page, redirect browser. . .

2010-09-21 3pm UK time

Twitter patch vulnerability (7am their time)

Ian Stark APL9 2010-10-26

http://twitter.com/kinugawamasato/
http://twitter.com/#!/judofyr/

Twitter Javascript injection

2010-09-21 10am UK time

Masato Kinugawa creates “Rainbow Twitter” demonstration.

Magnus Holm creates self-tweeting tweet.

Requires user to mouse over; limits replication to around 60
copies/second, reaching only a few hundred thousand twitter users.

Further worms require no mouse-over, insert further tweets, draw
arbitrarily on page, redirect browser. . .

2010-09-21 3pm UK time

Twitter patch vulnerability (7am their time)

Ian Stark APL9 2010-10-26

http://twitter.com/kinugawamasato/
http://twitter.com/#!/judofyr/

Twitter Javascript injection

2010-09-21 10am UK time

Masato Kinugawa creates “Rainbow Twitter” demonstration.

Magnus Holm creates self-tweeting tweet.
Requires user to mouse over; limits replication to around 60
copies/second, reaching only a few hundred thousand twitter users.

Further worms require no mouse-over, insert further tweets, draw
arbitrarily on page, redirect browser. . .

2010-09-21 3pm UK time

Twitter patch vulnerability (7am their time)

Ian Stark APL9 2010-10-26

http://twitter.com/kinugawamasato/
http://twitter.com/#!/judofyr/

Twitter Javascript injection

2010-09-21 10am UK time

Masato Kinugawa creates “Rainbow Twitter” demonstration.

Magnus Holm creates self-tweeting tweet.
Requires user to mouse over; limits replication to around 60
copies/second, reaching only a few hundred thousand twitter users.

Further worms require no mouse-over, insert further tweets, draw
arbitrarily on page, redirect browser. . .

2010-09-21 3pm UK time

Twitter patch vulnerability (7am their time)

Ian Stark APL9 2010-10-26

http://twitter.com/kinugawamasato/
http://twitter.com/#!/judofyr/

Twitter Javascript injection

2010-09-21 10am UK time

Masato Kinugawa creates “Rainbow Twitter” demonstration.

Magnus Holm creates self-tweeting tweet.
Requires user to mouse over; limits replication to around 60
copies/second, reaching only a few hundred thousand twitter users.

Further worms require no mouse-over, insert further tweets, draw
arbitrarily on page, redirect browser. . .

2010-09-21 3pm UK time

Twitter patch vulnerability (7am their time)

Ian Stark APL9 2010-10-26

http://twitter.com/kinugawamasato/
http://twitter.com/#!/judofyr/

Twitter Javascript injection

2010-09-21 10am UK time

Masato Kinugawa creates “Rainbow Twitter” demonstration.

Magnus Holm creates self-tweeting tweet.
Requires user to mouse over; limits replication to around 60
copies/second, reaching only a few hundred thousand twitter users.

Further worms require no mouse-over, insert further tweets, draw
arbitrarily on page, redirect browser. . .

2010-09-21 3pm UK time

Twitter patch vulnerability (7am their time)

http://www.guardian.co.uk/technology/blog/2010/sep/21/twitter-hack-explained-xss-javascript
http://blog.twitter.com/2010/09/all-about-onmouseover-incident.html

Ian Stark APL9 2010-10-26

http://twitter.com/kinugawamasato/
http://twitter.com/#!/judofyr/
http://www.guardian.co.uk/technology/blog/2010/sep/21/twitter-hack-explained-xss-javascript
http://blog.twitter.com/2010/09/all-about-onmouseover-incident.html

SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database.

For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

Ian Stark APL9 2010-10-26

SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

Ian Stark APL9 2010-10-26

SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

we might supply the unusual email address “x’ or 1=1 --”

Ian Stark APL9 2010-10-26

SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

we might supply the unusual email address “x’ or 1=1 --” to get

select id, email, password
from users
where email = ’x’ or 1=1 −−’

which will return a complete list of users.

Ian Stark APL9 2010-10-26

SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

we might supply the perverse email address “x’; update users set
email=’bob@example.com’ where email=’admin@server’ --”

Ian Stark APL9 2010-10-26

SQL Injection

HTML injection causes a server to deliver a surprising web page.

SQL injection can cause a database server to carry out unexpected actions
on the database. For example, where a server contains code like this:

select id, email, password
from users
where email = ’bob@example.com’

we might supply the perverse email address “x’; update users set
email=’bob@example.com’ where email=’admin@server’ --” to get

select id, email, password
from users
where email = ’x’; update users set email = ’bob@example.com’

where email = ’admin@server’ −−’

which will redirect all the administrator’s email to Bob.

Ian Stark APL9 2010-10-26

Dubious Licence Plate

Ian Stark APL9 2010-10-26

Working with Query Languages

How then do we write programs to generate and manipulate queries?

A common approach is to use some standard framework or application
programming interface (API). ODBC, the Open Database Connectivity
specification, is a well-known framework for managed database access:

At the back, an ODBC driver contains code for a specific database
management system (DB2, Oracle, SQL Server, . . .).
At the front, the programmer connects to a fixed procedural API
In between, ODBC libraries translate between API and driver.

Particular programming languages and environments may place further
layers on top of ODBC, or use similar mechanisms. For example: JDBC
for Java and ADO.NET for the Microsoft .NET framework.

Ian Stark APL9 2010-10-26

JDBC: Java Database Connectivity

JDBC is a Java library, in the java.sql.∗ and javax.sql.∗ packages, which
provides access to read, write and modify tabular data.

Relational databases, with access via SQL, is the most common
application; but JDBC can also operate on other data sources.

The connection to the database itself may be via a driver that bridges
through ODBC, speaks a proprietary database protocol, or connects to
some further networking component or application.

Ian Stark APL9 2010-10-26

JDBC Bootup

import java.sql.∗; // Obtain the relevant classes

// Install a suitable driver
Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

// Identify the database
String url = "jdbc:derby:Users";

// Prepare login information
String user = "bob"
String password = "secret"

// Open connection to database
Connection con = DriverManager.getConnection(url, user, password);

Ian Stark APL9 2010-10-26

Sample JDBC

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT name, id, score FROM Users");

while (rs.next()) // Loop through each row returned by the query
{
String n = rs.getString("name");
int i = rs.getInt("id");
float s = rs.getFloat("score");
System.out.println(n+i+s);

}

Ian Stark APL9 2010-10-26

JDBC String Fiddling

float findScoreForUser(Connection con, String name) {

Statement stmt = con.createStatement();

String query =
"SELECT id, score FROM Users WHERE name=" + name;

ResultSet rs = stmt.executeQuery(query);

float s = rs.getFloat("score");

return s;
}

Ian Stark APL9 2010-10-26

JDBC Prepared Strings

String findUsersInRange(Connection con, float low, float high) {

String prequery =
"SELECT id, name FROM Users WHERE ? < score AND score < ?";

PreparedStatement stmt = con.prepareStatement(prequery);

stmt.setFloat(1,low); // Fill in the two
stmt.setFloat(2,high); // missing values

rs = stmt.executeQuery(query); // Now run the completed query

String answer = ""; // Start building our answer

while (rs.next()) // Cycle through the query responses
{ answer = answer + rs.getInt("id") + ":" + rs.getString("name") + "\n"; }
return answer;

}

Ian Stark APL9 2010-10-26

That seems like hard work

These examples use the full generality of the ODBC framework:

Arbitrary drivers . . .
. . . possibly to proprietary data sources . . .
. . . across the network . . .
. . . with authentication and authorization . . .
. . . ensuring consistency under multiple transactions.

Appropriate wrappers and frameworks can make things more
straightforward in simpler situations.

However, the basic scheme of building queries as strings is ubiquitous.

Ian Stark APL9 2010-10-26

Can I use something else instead?

There are several other approaches to database access:

Frameworks like Java Hibernate preserve objects over time.
Object Relational Mapping (ORM) translates between
programming-language object structures and persistent database
storage.
An Object-Oriented Database Management System (OODBMS)
works with objects instead of relations, tables and rows.
Other systems like CouchDB, BigTable, and Cassandra store a variety
of structured data for shared access.

These are sometimes known collectively as NoSQL architectures.

In general, these offer a different mix of features and performance to
conventional relational database management systems (RDBMS).

Ian Stark APL9 2010-10-26

So why would I want to use SQL anyway?

Sometimes, SQL is inevitable for non-technical reasons:

External databases
Legacy databases
Existing code

Often, though, it’s because of genuine advantages of relational databases:

Complex queries joining multiple large datasets
Efficient query optimization and execution
Transactional consistency

SQL or not, though, any scheme which involves handing over complex
queries to a specialized engine will encounter the issue of using one
language from another.

Ian Stark APL9 2010-10-26

Summary

SQL is a domain-specific language for programming queries over relational
databases. Queries may be complex, with declarative and imperative
components, and are often constructed by other programs rather than by
hand.

Websites are vulnerable to cross-site scripting or XSS whenever they take
user input and use it to generate pages. The analogous problem of SQL
injection arises where free text input is used to construct structured
queries.

Programs generating SQL code use frameworks like JDBC or ADO.NET;
and these do construct queries using unstructured string manipulation.
Using prepared strings begins to add back some structure.

SQL queries are programs in a structured high-level language, but we treat
them as unstructured text.

Ian Stark APL9 2010-10-26

Homework

Thursday’s lecture will be about the LINQ framework on C#.

Find an online tutorial about C#
Read it.
Post the URL, and your comments on the tutorial, to the blog

Ian Stark APL9 2010-10-26

Background reading

To find out more about database access in Java and C#, start with these
tutorials:

Sun’s JDBC tutorial
http://java.sun.com/docs/books/tutorial/jdbc/index.html

The C# Station ADO.NET tutorial
http://www.csharp-station.com/Tutorials/AdoDotNet/Lesson01.aspx

Ian Stark APL9 2010-10-26

http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://www.csharp-station.com/Tutorials/AdoDotNet/Lesson01.aspx

