
http://www.inf.ed.ac.uk/teaching/courses/apl

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Advances in Programming Languages
APL7: Polymorphism from Types to Kinds and Beyond

Ian Stark

School of Informatics
The University of Edinburgh

Tuesday 12 October
Semester 1 Week 4

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Foreword

Some Types in Haskell

This is the second of three lectures about some features of types and
typing in Haskell, specifically:

Type classes

Polymorphism, kinds and constructor classes

Monads and interaction with the outside world

Ian Stark APL7 2010-10-12

Foreword

Some Types in Haskell

This is the second of three lectures about some features of types and
typing in Haskell, specifically:

Type classes

Polymorphism, kinds and constructor classes

Monads and interaction with the outside world

Ian Stark APL7 2010-10-12

Summary

Object-oriented languages offer polymorphism and run different code for
different objects. For class-based OO languages like Java this ad-hoc
polymorphism can require complex resolution of method invocation. In
addition, generic code acts on parameterized types to give parametric
polymorphism.

Functional languages use parametric polymorphism extensively; Haskell
type classes extend it with qualified types to select different code for
different types. This gives ad-hoc polymorphism, overloading, inheritance,
multiple dispatch, and more.

Types and type constructors are grouped by kind, and even higher kinds;
these too can be qualified into constructor classes like Functor.

Ian Stark APL7 2010-10-12

Outline

1 Polymorphism

2 Type Classes

3 Constructor Classes

4 Closing

Ian Stark APL7 2010-10-12

Flavours of Polymorphism

Ad-hoc Polymorphism
Classic object-oriented polymorphism: invoke method a.draw() and get
whatever code is assigned to the target object a or its class.

Implementing this requires some attention to the dispatch of methods to
determine the code finally executed.

Parametric Polymorphism
Operations that act similarly on arguments of all types: sorting a list,
applying a function to every element of a collection.

Closely tied to parameterized types and in OO languages known as
generics, as with LinkedList<String> or Map<K,V>.

Ian Stark APL7 2010-10-12

What Decides Which Method in Java?

In a class-based object-oriented programming language like Java, with
overloading, inheritance, interfaces and abstract classes, it can be quite
complex to resolve which method implementation is actually invoked on
execution.

Appointment booking = diary.lookup(date,time,place);

What contributes to the dispatch decision as to which lookup method
implementation executes at runtime?

Ian Stark APL7 2010-10-12

What Decides Which Method in Java?

Appointment booking = diary.lookup(date,time,place);

What determines the lookup code actually executed?

The name of the method?

The compile-time class of the diary variable?

The run-time class of the object in the diary variable?

The number of parameters listed?

The compile-time class of the parameters date, time, place?

The run-time class of the objects passed as arguments date, time, place?

The class of the result booking?

The subsequent operations on the result booking?

Something more?

Java makes certain choices here; other languages make different ones.
Ian Stark APL7 2010-10-12

Parametric Polymorphism in Haskell

Haskell makes extensive use of parametric polymorphism

reverse :: [a] −> [a]

> reverse [1,2,3]
[3,2,1]

> reverse [True,False]
[False,True]

> reverse "Edinburgh"
"hgrubnidE"

The polymorphic function reverse here must use nothing at all specific
about the type ‘a’ being handled.

Ian Stark APL7 2010-10-12

Qualified Polymorphism

Type classes refine this so functions can make assumptions about the
operations available on values.

revShow :: Show a => [a] −> [String]
revShow = reverse . map show

> revShow [1,2,3]
["3","2","1"]

> revShow [1.2,3.4,5.6]
["5.6","3.4","1.2"]

> revShow "abc"
["’c’","’b’","’a’"]

These have a dictionary-passing implementation, which is accessible to
standard compiler optimisations.

Ian Stark APL7 2010-10-12

Qualified Polymorphism

> revShow [1.2,3.4,5.6]
["5.6","3.4","1.2"]

> revShow "abc"
["’c’","’b’","’a’"]

These look a little like method dispatch and OO-style ad-hoc
polymorphism, but they are not the same: although different lists passed
to revShow may contain different types, each list must carry only elements
of a single type.

Homogeneous collections, not heterogeneous

This qualified polymorphism deals well with issues like
maximum, minimum :: (Ord a) => [a] −> a

which caused such problems for the Java type system.

Ian Stark APL7 2010-10-12

Outline

1 Polymorphism

2 Type Classes

3 Constructor Classes

4 Closing

Ian Stark APL7 2010-10-12

Multiple Classes

Polymorphic values may use more than one qualification:

showMax :: (Ord a, Show a) => [a] −> String
showMax = show . maximum

> showMax [1,2,3]
"3"

> showMax "Edinburgh"
"’u’"

> showMax ["Advances","Programming","Languages"]
"\"Programming\""

Ian Stark APL7 2010-10-12

Subclassing

Adding qualifications to class declarations introduces subclassing:

class Eq a => Ord a where
compare :: a −> a −> Ordering
(<), (<=), (>=), (>) :: a −> a −> Bool
max, min :: a −> a −> a

So every Ord type is also an Eq type: but note that this is subclassing not
subtyping.

Ian Stark APL7 2010-10-12

Multiway Subclassing

Classes may depend on more
than one superclass; including
diamonds of related classes.

Ian Stark APL7 2010-10-12

Nested Instances

class Reportable a where
report :: a −> String

instance Reportable Integer where
report i = show i

instance Reportable Char where
report c = [c]

Ian Stark APL7 2010-10-12

Nested Instances

class Reportable a where
report :: a −> String

instance Reportable a => Reportable [a] where
report xs = "[" ++ intercalate "," (map report xs) ++ "]"

instance (Reportable a, Reportable b) => Reportable (a,b) where
report (x,y) = "(" ++ report x ++ "," ++ report y ++ ")"

> report [(1,’p ’),(2,’q’)]
"[(1,p),(2,q)]"

Building concrete instances like Reportable [(a,b)] may require some search
by the compiler. (instance declarations ≈ mini logic programming)

Ian Stark APL7 2010-10-12

Code Inheritance

Classes declarations may carry code that is inherited by all types of that
class.

class Eq a where
(==), (/=) :: a −> a −> Bool

x /= y = not (x == y)
x == y = not (x /= y)

Instances of Eq may provide ==, or /=, or both.

Types may draw code from multiple classes, as with OO traits and mixins.

Ian Stark APL7 2010-10-12

Multimethods

Polymorphic qualification need not be determined by a single “primary”
value.

(++) :: [a] −> [a] −> [a]

left x = "Before" ++ x

right y = y ++ [3,4,5]

both x y = (x ++ y) :: [Float]

This answers the “binary method problem” in a similar way to OO multiple
dispatch.

Ian Stark APL7 2010-10-12

Typing by Result

Resolving which instance of a method to use may even be done without
any arguments at all:

maxBound :: (Bounded a) => a

Instance by result is used to overload numeric constants. The definition

bump x = x + 5 −− 5 :: (Num t) => t

is expanded by the compiler, with dictionary passing, to:

bump d x = (d (+)) x (d fromInteger 5)

Hence the user-written bump gets all the flexibility of built-in 5.

Although in some cases, the slowest part of computing (x+1) may be the 1.

Ian Stark APL7 2010-10-12

Outline

1 Polymorphism

2 Type Classes

3 Constructor Classes

4 Closing

Ian Stark APL7 2010-10-12

Types and Constructors

In Haskell every value has a type.

42 :: Integer
pi :: Double
"Hello, world!" :: String
1/3 :: Rational

Some types are built from other types.

Just pi :: Maybe Float
Nothing :: Maybe Float
Left 4 :: Either Int Float
Right 1.2 :: Either Int Float
[True] :: [Bool]

Ian Stark APL7 2010-10-12

Kinds and Higher Kinds

In Haskell Integer is a type, while Maybe and Either are type constructors
— unlike types, constructors have no values.

Types and constructors are themselves classified by kinds. Every type has
kind ∗, and constructors have kinds built using ∗ and −>.

Integer, Int, Float :: ∗ [] :: ∗ −> ∗
Maybe :: ∗ −> ∗ (,) :: ∗ −> ∗ −> ∗

(,,) :: ∗ −> ∗ −> ∗ −> ∗

It is even possible to have higher kinds:

data TreeOf f a = Leaf a | Node (f (TreeOf f a))

Node [Leaf True,Leaf False] :: TreeOf [] Bool

TreeOf :: (∗−>∗) −> ∗ −> ∗

Ian Stark APL7 2010-10-12

Classes for Constructors

Not only do constructors have kinds, they can also belong to classes within
them.

class Functor f where −− Type constructor f :: ∗ −> ∗
fmap :: (a −> b) −> f a −> f b

instance Functor [] where
fmap = map

instance Functor Maybe where
fmap p Nothing = Nothing
fmap p (Just x) = Just (p x)

instance Functor f => Functor (TreeOf f) where
fmap p (Leaf a) = Leaf (p a)
fmap p (Node n) = Node (fmap p n)

Ian Stark APL7 2010-10-12

And it goes on...

Haskell has an expanding cornucopia of type-driven language features.
Many are implemented in GHC, if only experimentally.

Multiparameter type classes class Collects s e
Explicit kinds 1 :: (Int :: ∗)
Explicit for-all f :: forall a.(a −> a −> a)
Rank-2 polymorphism, and higher g :: (forall a.(a−>[a])) −> Int
Existential types xs :: exists a.(a, a−>Bool, a−>String)
GADT: Generalized Algebraic Datatypes
. . .

Ian Stark APL7 2010-10-12

Outline

1 Polymorphism

2 Type Classes

3 Constructor Classes

4 Closing

Ian Stark APL7 2010-10-12

Summary

Object-oriented languages offer polymorphism and run different code for
different objects. For class-based OO languages like Java this ad-hoc
polymorphism can require complex resolution of method invocation. In
addition, generic code acts on parameterized types to give parametric
polymorphism.

Functional languages use parametric polymorphism extensively; Haskell
type classes extend it with qualified types to select different code for
different types. This gives ad-hoc polymorphism, overloading, inheritance,
multiple dispatch, and more.

Types and type constructors are grouped by kind, and even higher kinds;
these too can be qualified into constructor classes like Functor.

Ian Stark APL7 2010-10-12

Reading

Homework
Friday’s lecture will be about monads and I/O in Haskell. Read the
following set of slides on types and effects.

Simon Peyton Jones
Caging the Effects Monster: The Next Big Challenge
Slides from talks at QCon 2008 and ACCU ’08
Available online from
http://research.microsoft.com/en-us/people/simonpj/

Ian Stark APL7 2010-10-12

http://research.microsoft.com/~simonpj/papers/effects/effects-spring-08.pdf.gz
http://qconlondon.com/london-2008/conference/
http://accu.org/index.php/conferences/accu_conference_2008
http://research.microsoft.com/en-us/people/simonpj/

Further References

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha
The Java Language Specification, Third Edition
Addison Wesley, 2005

Bryan O’Sullivan, Don Stewart, and John Goerzen
Real World Haskell
O’Reilly Media, 2008
http://www.realworldhaskell.org/

To find out about Java method invocation, see §15.12 of the language
specification.

For more on type classes, see Chapter 6 of Real World Haskell, and in
particular the sections on numeric types and functions.

Ian Stark APL7 2010-10-12

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://book.realworldhaskell.org/read/
http://www.realworldhaskell.org/
http://java.sun.com/docs/books/jls/third_edition/html/expressions.html#15.12
http://book.realworldhaskell.org/read/using-typeclasses.html
http://book.realworldhaskell.org/read/using-typeclasses.html#numerictypes.summary
http://book.realworldhaskell.org/read/using-typeclasses.html#numerictypes.funcs

Further References

Mark Jones
A system of constructor classes: overloading and implicit higher-order
polymorphism
In Functional Programming and Computer Architecture: Proceedings
of FPCA ’93, pages 52–61. ACM Press, 1993.

James Cheney and Ralf Hinze
First-class phantom types
Technical Report TR2003-1901, Cornell University Faculty of
Computing and Information Science

Ian Stark APL7 2010-10-12

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/165180.165190
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/165180.165190
http://homepages.inf.ed.ac.uk/jcheney/
http://hdl.handle.net/1813/5614

	Polymorphism
	Type Classes
	Constructor Classes
	Closing

