Advances in Programming Languages

APLT: Polymorphism from Types to Kinds and Beyond

lan Stark

School of Informatics
The University of Edinburgh

Tuesday 12 October
Semester 1 Week 4

http://www.inf.ed.ac.uk/teaching/courses/apl

http://www.inf.ed.ac.uk/teaching/courses/apl
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Foreword

Some Types in Haskell

This is the second of three lectures about some features of types and
typing in Haskell, specifically:

@ Type classes
@ Polymorphism, kinds and constructor classes

@ Monads and interaction with the outside world

lan Stark APL7 2010-10-12

Foreword

Some Types in Haskell

This is the second of three lectures about some features of types and
typing in Haskell, specifically:

@ Type classes
@ Polymorphism, kinds and constructor classes

@ Monads and interaction with the outside world

lan Stark APL7 2010-10-12

Object-oriented languages offer polymorphism and run different code for
different objects. For class-based OO languages like Java this ad-hoc
polymorphism can require complex resolution of method invocation. In
addition, generic code acts on parameterized types to give parametric
polymorphism.

Functional languages use parametric polymorphism extensively; Haskell
type classes extend it with qualified types to select different code for
different types. This gives ad-hoc polymorphism, overloading, inheritance,
multiple dispatch, and more.

Types and type constructors are grouped by kind, and even higher kinds;
these too can be qualified into constructor classes like Functor.

lan Stark APL7 2010-10-12

@ Polymorphism

lan Stark APL7 2010-10-12

Flavours of Polymorphism

Ad-hoc Polymorphism

Classic object-oriented polymorphism: invoke method a.draw() and get
whatever code is assigned to the target object a or its class.

Implementing this requires some attention to the dispatch of methods to
determine the code finally executed.

Parametric Polymorphism

Operations that act similarly on arguments of all types: sorting a list,
applying a function to every element of a collection.

Closely tied to parameterized types and in OO languages known as
generics, as with LinkedList<String> or Map<K,V>.

lan Stark APL7 2010-10-12

What Decides Which Method in Java?

In a class-based object-oriented programming language like Java, with
overloading, inheritance, interfaces and abstract classes, it can be quite
complex to resolve which method implementation is actually invoked on
execution.

Appointment booking = diary.lookup(date,time,place);

What contributes to the dispatch decision as to which lookup method
implementation executes at runtime?

lan Stark APL7 2010-10-12

What Decides Which Method in Java?

Appointment booking = diary.lookup(date,time,place);

What determines the lookup code actually executed?

@ The name of the method?

@ The compile-time class of the diary variable?

@ The run-time class of the object in the diary variable?

@ The number of parameters listed?

@ The compile-time class of the parameters date, time, place?

@ The run-time class of the objects passed as arguments date, time, place?
@ The class of the result booking?

@ The subsequent operations on the result booking?

@ Something more?

Java makes certain choices here; other languages make different ones.
lan Stark APL7 2010-10-12

Parametric Polymorphism in Haskell

Haskell makes extensive use of parametric polymorphism

reverse :: [a] —> [a]

> reverse [1,2,3]
[3,2,1]

> reverse [True, False]
[False, True]

> reverse "Edinburgh”
"hgrubnidE"

The polymorphic function reverse here must use nothing at all specific
about the type ‘a’ being handled.

lan Stark APL7 2010-10-12

Qualified Polymorphism

Type classes refine this so functions can make assumptions about the
operations available on values.

revShow :: Show a => [a] —> [String]
revShow = reverse . map show

> revShow [1,2,3]

[I|3llle2IIVII1II]

> revShow [1.2,3.4,5.6]
[I|5.6II,|I3.4II’|I1.2II]

> revShow "abc"

[Mre, b,

These have a dictionary-passing implementation, which is accessible to
standard compiler optimisations.

lan Stark APL7 2010-10-12

Qualified Polymorphism

> revShow [1.2,3.4,5.6]
[I|5-6II,II3.4II,II1.2II]
> revShow "abc"

R

These look a little like method dispatch and OO-style ad-hoc
polymorphism, but they are not the same: although different lists passed
to revShow may contain different types, each list must carry only elements
of a single type.

Homogeneous collections, not heterogeneous
This qualified polymorphism deals well with issues like
maximum, minimum :: (Ord a) => [a] —> a

which caused such problems for the Java type system.

lan Stark APL7 2010-10-12

© Type Classes

lan Stark APL7 2010-10-12

Multiple Classes

Polymorphic values may use more than one qualification:

lan Stark

showMax :: (Ord a, Show a) => [a] —> String
showMax = show . maximum

> showMax [1,2,3]
||3||

> showMax "Edinburgh"

u

> showMax ["Advances","Programming”, "Languages"]
"\"Programming\""

APL7 2010-10-12

Subclassing

Adding qualifications to class declarations introduces subclassing:

class Eq a => Ord a where

compare > a —> a —> Ordering
(<), (<=), (>=), (>») =+ a—> a —> Bool
max, min T a—>a—>a

So every Ord type is also an Eq type: but note that this is subclassing not
subtyping.

lan Stark APL7 2010-10-12

Multiway Subclassing

Read
All except
10, (->)

Bounded
Int, Char, Bool, ()
Ordering. tuples,

/ Eq
All except 10, (->)
[—

All except ()
10, 10Error

Int, Integer,
Float, Double,

Real
(). Bool. Char, Ordering.

Int. Inteser. Float Int, Integer
. feest, Fodk Float, Double

Double
] -

- |
—— |
- -
Integral RealFrac Floating
Int. Integer Float, Double Float, Double
"

RealFloat
Float, Double

Monad
10, [], Maybe
[y

APL7

Enum

Classes may depend on more
than one superclass; including
diamonds of related classes.

lan Stark

Nested Instances

class Reportable a where
report :: a —> String

instance Reportable Integer where
report i = show i

instance Reportable Char where
report ¢ = [c]

lan Stark APL7 2010-10-12

Nested Instances

class Reportable a where
report :: a —> String

instance Reportable a => Reportable [a] where

report xs = "[" ++ intercalate "," (map report xs) ++ "]"

instance (Reportable a, Reportable b) => Reportable (a,b) where
report (x,y) = "(" 4+ report x ++ "," ++ report y +4 ")"

> report [(1,'p),(2,'q’)]
"[(1,p).(2.9)]"

Building concrete instances like Reportable [(a,b)] may require some search
by the compiler. (instance declarations & mini logic programming)

lan Stark APL7 2010-10-12

Code Inheritance

Classes declarations may carry code that is inherited by all types of that
class.

class Eq a where
(==), (/=) :: a—> a —> Bool

x /=y =not (x==y)
x ==y =not (x /=y)

Instances of Eq may provide ==, or /=, or both.

Types may draw code from multiple classes, as with OO traits and mixins.

lan Stark APL7 2010-10-12

Multimethods

Polymorphic qualification need not be determined by a single “primary”
value.

(++) = [a] —> [a] —> [a]
left x = "Before" ++ x

right y =y ++ [3,4,5]
both x y = (x ++ y) :: [Float]

This answers the “binary method problem” in a similar way to OO multiple
dispatch.

lan Stark APL7 2010-10-12

Typing by Result

Resolving which instance of a method to use may even be done without
any arguments at all:

maxBound :: (Bounded a) => a

Instance by result is used to overload numeric constants. The definition
bump x = x + 5 —— 5 (Numt)=>t

is expanded by the compiler, with dictionary passing, to:
bump d x = (d (+)) x (d fromlInteger 5)

Hence the user-written bump gets all the flexibility of built-in 5.

Although in some cases, the slowest part of computing (x+1) may be the 1.

lan Stark APL7 2010-10-12

Outline

© Constructor Classes

lan Stark APL7 2010-10-12

Types and Constructors

In Haskell every value has a type.

42 :: Integer

pi :: Double

"Hello, world!" :: String
1/3 :: Rational

Some types are built from other types.

Just pi :: Maybe Float
Nothing :: Maybe Float
Left 4 :: Either Int Float
Right 1.2 :: Either Int Float
[True] :: [Bool]

lan Stark APL7 2010-10-12

Kinds and Higher Kinds

In Haskell Integer is a type, while Maybe and Either are type constructors
— unlike types, constructors have no values.

Types and constructors are themselves classified by kinds. Every type has
kind *, and constructors have kinds built using * and —>.

Integer, Int, Float :: x [[| o+ %—>x
Maybe :: % —> x (,) ok —=>% —> %
(,,) ok => % —> % —> %

It is even possible to have higher kinds:
data TreeOf f a = Leaf a | Node (f (TreeOf f a))
Node [Leaf True,Leaf False] :: TreeOf [| Bool

TreeOf i1 (x—>%) —> % —> %

lan Stark APL7 2010-10-12

Classes for Constructors

Not only do constructors have kinds, they can also belong to classes within
them.

class Functor f where —— Type constructor f :: x —> %
fmap:: (a—>b) —>fa—>fb

instance Functor [| where
fmap = map

instance Functor Maybe where
fmap p Nothing = Nothing
fmap p (Just x) = Just (p x)

instance Functor f => Functor (TreeOf f) where
fmap p (Leaf a) = Leaf (p a)
fmap p (Node n) = Node (fmap p n)

lan Stark APL7 2010-10-12

Haskell has an expanding cornucopia of type-driven language features.
Many are implemented in GHC, if only experimentally.

Multiparameter type classes class Collects s e

Explicit kinds 1 :: (Int ::)

Explicit for-all f :: forall a.(a —> a —> a)

Rank-2 polymorphism, and higher g :: (forall a.(a—>[a])) —> Int
Existential types xs :: exists a.(a, a—>Bool, a—>String)

GADT: Generalized Algebraic Datatypes

lan Stark APL7 2010-10-12

@ Closing

lan Stark APL7 2010-10-12

Object-oriented languages offer polymorphism and run different code for
different objects. For class-based OO languages like Java this ad-hoc
polymorphism can require complex resolution of method invocation. In
addition, generic code acts on parameterized types to give parametric
polymorphism.

Functional languages use parametric polymorphism extensively; Haskell
type classes extend it with qualified types to select different code for
different types. This gives ad-hoc polymorphism, overloading, inheritance,
multiple dispatch, and more.

Types and type constructors are grouped by kind, and even higher kinds;
these too can be qualified into constructor classes like Functor.

lan Stark APL7 2010-10-12

Homework

Friday's lecture will be about monads and I/O in Haskell. Read the
following set of slides on types and effects.

[4 Simon Peyton Jones
Caging the Effects Monster: The Next Big Challenge
Slides from talks at QCon 2008 and ACCU '08
Available online from
http://research.microsoft.com/en-us/people/simonpj/

lan Stark APL7 2010-10-12

http://research.microsoft.com/~simonpj/papers/effects/effects-spring-08.pdf.gz
http://qconlondon.com/london-2008/conference/
http://accu.org/index.php/conferences/accu_conference_2008
http://research.microsoft.com/en-us/people/simonpj/

Further References

[James Gosling, Bill Joy, Guy Steele, and Gilad Bracha
The Java Language Specification, Third Edition
Addison Wesley, 2005

E Bryan O’Sullivan, Don Stewart, and John Goerzen
Real World Haskell
O'Reilly Media, 2008
http://www.realworldhaskell.org/

To find out about Java method invocation, see §15.12 of the language
specification.

For more on type classes, see Chapter 6 of Real World Haskell, and in
particular the sections on numeric types and functions.

lan Stark APL7 2010-10-12

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://book.realworldhaskell.org/read/
http://www.realworldhaskell.org/
http://java.sun.com/docs/books/jls/third_edition/html/expressions.html#15.12
http://book.realworldhaskell.org/read/using-typeclasses.html
http://book.realworldhaskell.org/read/using-typeclasses.html#numerictypes.summary
http://book.realworldhaskell.org/read/using-typeclasses.html#numerictypes.funcs

Further References

[] Mark Jones
A system of constructor classes: overloading and implicit higher-order
polymorphism
In Functional Programming and Computer Architecture: Proceedings
of FPCA '93, pages 52—-61. ACM Press, 1993.

[4 James Cheney and Ralf Hinze
First-class phantom types
Technical Report TR2003-1901, Cornell University Faculty of
Computing and Information Science

lan Stark APL7 2010-10-12

http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/165180.165190
http://dx.doi.org.ezproxy.webfeat.lib.ed.ac.uk/10.1145/165180.165190
http://homepages.inf.ed.ac.uk/jcheney/
http://hdl.handle.net/1813/5614

	Polymorphism
	Type Classes
	Constructor Classes
	Closing

